The generalized Hermitian and skew-Hermitian splitting iterative method for image restoration
نویسندگان
چکیده
In this paper, we apply the generalized Hermitian and skew-Hermitian splitting (GHSS) iterative method to the problem of image restoration. We use a new splitting of the Hermitian part of the coefficient matrix of the problem. Moreover, we introduce a restricted version of the GHSS (RGHSS) iterative method together with its convergence properties. The optimal parameter, which minimizes the spectral radius of the iteration matrix of the RGHSS method, is also given. We present some numerical examples to show the effectiveness and accuracy of the method and compare it with a recently proposed method.
منابع مشابه
Convergence Properties of Hermitian and Skew Hermitian Splitting Methods
In this paper we consider the solutions of linear systems of saddle point problems. By using the spectrum of a quadratic matrix polynomial, we study the eigenvalues of the iterative matrix of the Hermitian and skew Hermitian splitting method.
متن کاملOn generalized preconditioned Hermitian and skew-Hermitian splitting methods for saddle point problems
In this paper, we study the iterative algorithms for saddle point problems(SPP). Bai, Golub and Pan recently studied a class of preconditioned Hermitian and skew-Hermitian splitting methods(PHSS). By further accelerating it with another parameters, using the Hermitian/skew-Hermitian splitting iteration technique we present the generalized preconditioned Hermitian and skew-Hermitian splitting me...
متن کاملTwo-parameter generalized Hermitian and skew-Hermitian splitting iteration method
It is known that the Hermitian and skew-Hermitian splitting (HSS) iteration method is an efficient solver for non-Hermitian positive definite linear system of equations. In [M. Benzi, SIAM J. Matrix Anal. Appl. 31 (2009) 360–374] Benzi proposed a generalization of the HSS (GHSS) iteration method. In this paper, we present a two-parameter version of the GHSS (TGHSS) method and investigate its co...
متن کاملAn iterative method for the Hermitian-generalized Hamiltonian solutions to the inverse problem AX=B with a submatrix constraint
In this paper, an iterative method is proposed for solving the matrix inverse problem $AX=B$ for Hermitian-generalized Hamiltonian matrices with a submatrix constraint. By this iterative method, for any initial matrix $A_0$, a solution $A^*$ can be obtained in finite iteration steps in the absence of roundoff errors, and the solution with least norm can be obtained by choosing a special kind of...
متن کاملA Generalization of Local Symmetric and Skew-symmetric Splitting Iteration Methods for Generalized Saddle Point Problems
In this paper, we further investigate the local Hermitian and skew-Hermitian splitting (LHSS) iteration method and the modified LHSS (MLHSS) iteration method for solving generalized nonsymmetric saddle point problems with nonzero (2,2) blocks. When A is non-symmetric positive definite, the convergence conditions are obtained, which generalize some results of Jiang and Cao [M.-Q. Jiang and Y. Ca...
متن کامل