Stress-regulated kinase pathways in the recovery of tip growth and microtubule dynamics following osmotic stress in S. pombe.

نویسندگان

  • Alasdair M Robertson
  • Iain M Hagan
چکیده

The cell-integrity and stress-response MAP kinase pathways (CIP and SRP, respectively) are stimulated by various environmental stresses. Ssp1 kinase modulates actin dynamics and is rapidly recruited to the plasma membrane following osmotic stress. Here, we show that osmotic stress arrested tip growth, induced the deposition of abnormal cell-wall deposits at tips and led to disassociation of F-actin foci from cell tips together with a reduction in the amount of F-actin in these foci. Osmotic stress also ;froze' the dynamics of interphase microtubule bundles, with microtubules remaining static for approximately 38 minutes (at 30 degrees C) before fragmenting upon return to dynamic behaviour. The timing with which microtubules resumed dynamic behaviour relied upon SRP activation of Atf1-mediated transcription, but not on either CIP or Ssp1 signalling. Analysis of the recovery of tip growth showed that: (1) the timing of recovery was controlled by SRP-stimulated Atf1 transcription; (2) re-establishment of polarized tip growth was absolutely dependent upon SRP and partially dependent upon Ssp1 signalling; and (3) selection of the site for polarized tip extension required Ssp1 and the SRP-associated polarity factor Wsh3 (also known as Tea4). CIP signalling did not impact upon any aspect of recovery. The normal kinetics of tip growth following osmotic stress of plo1.S402A/E mutants established that SRP control over the resumption of tip growth after osmotic stress is distinct from its control of tip growth following heat or gravitational stresses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pap1+ confers microtubule damage resistance to mut2a, an extragenic suppressor of the rad26:4A allele in S. pombe.

The DNA structure checkpoint protein Rad26ATRIP is also required for an interphase microtubule damage response. This checkpoint delays spindle pole body separation and entry into mitosis following treatment of cells with microtubule poisons. This checkpoint requires cytoplasmic Rad26ATRIP, which is compromised by the rad26:4A allele that inhibits cytoplasmic accum...

متن کامل

Regulated vacuole fusion and fission in Schizosaccharomyces pombe: an osmotic response dependent on MAP kinases

BACKGROUND The budding yeast Saccharomyces cerevisiae uses two mitogenactivated protein (MAP) kinase cascades, the Hog1p and the Mpk1p pathways, to signal responses to hypertonic and hypotonic stress, respectively. Mammalian cells and the fission yeast Schizosaccharomyces pombe have functional homologues of Hog1p - p38/RK/CSBP and Sty1 - which, unlike Hog1p, also mediate other responses. We hav...

متن کامل

Schizosaccharomyces pombe protein phosphatase 1 in mitosis, endocytosis and a partnership with Wsh3/Tea4 to control polarised growth.

PP1 holoenzymes are composed of a small number of catalytic subunits and an array of regulatory, targeting, subunits. The Schizosaccharomyces pombe genome encodes two highly related catalytic subunits, Dis2 and Sds21. The gene for either protein can be individually deleted, however, simultaneous deletion of both is lethal. We fused enhanced green fluorescent protein (EGFP) coding sequences to t...

متن کامل

Activation and regulation of the Spc1 stress-activated protein kinase in Schizosaccharomyces pombe.

Spc1, an osmotic-stress-stimulated mitogen-activated protein kinase (MAPK) homolog in the fission yeast Schizosaccharomyces pombe, is required for the induction of mitosis and survival in high-osmolarity conditions. Spc1, also known as Sty1, is activated by Wis1 MAPK kinase and inhibited by Pyp1 tyrosine phosphatase. Spc1 is most closely related to Saccharomyces cerevisiae Hog1 and mammalian p3...

متن کامل

Different roles for the stress-activated protein kinase pathway in the regulation of trehalose metabolism in Schizosaccharomyces pombe.

The Wis1p-Sty1p mitogen-activated protein kinase cascade is a major signalling system in the fission yeast Schizosaccharomyces pombe for a wide range of stress responses. It is known that trehalose functions as a protective metabolite to counteract deleterious effects of environmental stresses. Herein it is reported that the expression of genes related to trehalose metabolism in S. pombe, ntp1(...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 121 Pt 24  شماره 

صفحات  -

تاریخ انتشار 2008