A comparison of artificial neural network and extended Kalman filter based sensorless speed estimation

نویسندگان

  • Zafer Aydogmus
  • Omur Aydogmus
چکیده

In industry speed estimation is one of the most important issue for monitoring and controlling systems. These kind of processes require costly measurement equipment. This issue can be eliminated by designing a sensorless system. In this paper we present a sensorless algorithm to estimate shaft speed of a dc motor for closed-loop control using an Artificial Neural Network (ANN). The method is based on the use of ANN to obtain a convenient correction for improving the calculated model speed. Three architectures of ANNs are developed and performance evaluations of the networks are performed by three performance criteria. After the evaluations, Levenberg–Marquardt backpropagation algorithm is chosen as learning algorithm due to its good performance. The speed estimation performance of developed ANN was compared with Extended Kalman Filter (EKF) under the same conditions. The results indicates that the proposed ANN shows better performance than the EKF. And ANN model can be used for speed estimation with reasonable accuracy. 2014 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sensorless Speed Control of Double Star Induction Machine With Five Level DTC Exploiting Neural Network and Extended Kalman Filter

This article presents a sensorless five level DTC control based on neural networks using Extended Kalman Filter (EKF) applied to Double Star Induction Machine (DSIM). The application of the DTC control brings a very interesting solution to the problems of robustness and dynamics. However, this control has some drawbacks such as the uncontrolled of the switching frequency and the strong ripple t...

متن کامل

Tuning of Extended Kalman Filter using Self-adaptive Differential Evolution Algorithm for Sensorless Permanent Magnet Synchronous Motor Drive

In this paper, a novel method based on a combination of Extended Kalman Filter (EKF) with Self-adaptive Differential Evolution (SaDE) algorithm to estimate rotor position, speed and machine states for a Permanent Magnet Synchronous Motor (PMSM) is proposed. In the proposed method, as a first step SaDE algorithm is used to tune the noise covariance matrices of state noise and measurement noise i...

متن کامل

Position and Speed Control of Brushless DC Motors Using Sensorless Techniques and Application Trends

This paper provides a technical review of position and speed sensorless methods for controlling Brushless Direct Current (BLDC) motor drives, including the background analysis using sensors, limitations and advances. The performance and reliability of BLDC motor drivers have been improved because the conventional control and sensing techniques have been improved through sensorless technology. T...

متن کامل

Sensorless Vector Control of Induction Motor Drive - A Model Based Approach

Induction machines are more rugged, compact, cheap and reliable in comparison to other machines used in similar applications. Vector controlled induction motor drive outperforms the dc motor drive because of higher transient current capability, increased speed range and lower rotor inertia. Sensors widely used in electric drives degrade the reliability of the system especially in hostile enviro...

متن کامل

Neural Networks and Neuro-fuzzy Based States and Parameters Estimation in Induction Motor Sensorless Drive

During the last decade, speed sensorless field-oriented control of induction motor has given a particular attention by researchers worldwide and a great number of papers have been published on this issue. In most of them, the authors proposed the speed estimation algorithms based on Kalman filter theory, neural networks and model of reference. In indirect vector control strategy, the accurate k...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016