Hyperspectral enhanced dark field microscopy for imaging blood cells.

نویسندگان

  • Giulia Sacco Verebes
  • Michele Melchiorre
  • Adianez Garcia-Leis
  • Carla Ferreri
  • Carla Marzetti
  • Armida Torreggiani
چکیده

In this work, a novel methodology based on hyperspectral imagery with enhanced Darkfield microscopy for probing and characterizing changes in blood cell components was tested. Two main categories of blood cells were analyzed, red and white blood cells. Unique spectral signatures of ordinary and most common deformed morphologies of red blood cells were identified. Moreover, examination of white blood cells allowed to characterize and differentiate active from inactive cells. The findings indicate the ability of this technique to detect changes in light scattering property of blood cells due to their morphological properties Since pathological states can alterate the discocyte shape, this preliminary, but promising application of the hyperspectral analysis to blood cells can be useful to evaluate significant correlations of blood cell spectral features in healthy and pathological conditions. The combination of the quali- and quantitative spectral signatures of hyperspectral imaging microscopy with the information of the subject health conditions may provide a new tool for clinical applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Building up spectral libraries for mapping erythrocytes by hyperspectral dark field microscopy

BACKGROUND: Red blood cells (RBC) are obtained by non-invasive methods and widely used for diagnostic tests of health status. Hyperspectral Dark Field Microscopy (HDFM) is a promising technique for nanoscale bio imaging and spectral analysis without additional sample preparation. OBJECTIVE: Develop a protocol for human RBC characterization by HDFM, checking the feasibility of a reference spectr...

متن کامل

Effect of Peptide Derived from Scorpion Toxin on Enhanced Permeability of Doxorubicin Conjugated Gold Nanoparticles in HeLa and MDA-MB-231 Cells

Background: Cell penetrating peptides (CPPs) can enter a cell through the cell membrane, and used in the fields of drug delivery, gene therapy, and cancer therapy by their property transporting various molecules into cytoplasm. Gold nanospheres (GNSs) are a useful tool for molecular imaging, because they are not cytotoxic and have high solubility, excellent light scattering property and ease of...

متن کامل

Enhanced penetration into 3D cell culture using two and three layered gold nanoparticles

Nano-scale particles sized 10-400 nm administered systemically preferentially extravasate from tumor vasculature due to the enhanced permeability and retention effect. Therapeutic success remains elusive, however, because of inhomogeneous particle distribution within tumor tissue. Insufficient tumor vascularization limits particle transport and also results in avascular hypoxic regions with non...

متن کامل

Hyperspectral-Enhanced Dark Field Microscopy for Single and Collective Nanoparticle Characterization in Biological Environments

We review how the hyperspectral dark field analysis gives us quantitative insights into the manner that different nanoscale materials interact with their environment and how this relationship is directly expressed in an optical readout. We engage classification tools to identify dominant spectral signatures within a scene or to qualitatively characterize nanoparticles individually or in populat...

متن کامل

A hyperspectral method to assay the microphysiological fates of nanomaterials in histological samples

Nanoparticles are used extensively as biomedical imaging probes and potential therapeutic agents. As new particles are developed and tested in vivo, it is critical to characterize their biodistribution profiles. We demonstrate a new method that uses adaptive algorithms for the analysis of hyperspectral dark-field images to study the interactions between tissues and administered nanoparticles. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biophotonics

دوره 6 11-12  شماره 

صفحات  -

تاریخ انتشار 2013