Scheduling to Minimize Average Completion Time Revisited: Deterministic On-Line Algorithms
نویسندگان
چکیده
We consider the scheduling problem of minimizing the average weighted completion time on identical parallel machines when jobs are arriving over time. For both the preemptive and the nonpreemptive setting, we show that straightforward extensions of Smith’s ratio rule yield smaller competitive ratios compared to the previously best-known deterministic on-line algorithms, which are (4+ ε)-competitive in either case. Our preemptive algorithm is 2-competitive, which actually meets the competitive ratio of the currently best randomized on-line algorithm for this scenario. Our nonpreemptive algorithm has a competitive ratio of 3.28. Both results are characterized by a surprisingly simple analysis; moreover, the preemptive algorithm also works in the less clairvoyant environment in which only the ratio of weight to processing time of a job becomes known at its release date, but neither its actual weight nor its processing time. In the corresponding nonpreemptive situation, every on-line algorithm has an unbounded competitive ratio.
منابع مشابه
On-line scheduling to minimize average completion time revisited
We consider the scheduling problem of minimizing the average-weighted completion time on identical parallel machines when jobs are arriving over time. For both the preemptive and the nonpreemptive setting, we show that straightforward extensions of Smith’s ratio rule yield smaller competitive ratios than the previously best-known deterministic on-line algorithms. c © 2003 Elsevier B.V. All righ...
متن کاملAn Iterated Greedy Algorithm for Flexible Flow Lines with Sequence Dependent Setup Times to Minimize Total Weighted Completion Time
This paper explores the flexile flow lines where setup times are sequence- dependent. The optimization criterion is the minimization of total weighted completion time. We propose an iterated greedy algorithm (IGA) to tackle the problem. An experimental evaluation is conducted to evaluate the proposed algorithm and, then, the obtained results of IGA are compared against those of some other exist...
متن کاملStochastic Online Scheduling Revisited
We consider the problem of minimizing the total weighted completion time on identical parallel machines when jobs have stochastic processing times and may arrive over time. We give randomized as well as deterministic online and off-line algorithms that have the best known performance guarantees in either setting, deterministic and offline or randomized and online. Our analysis is based on a nov...
متن کاملScheduling–lps Bear Probabilities Randomized Approximations for Min–sum Criteria Scheduling–lps Bear Probabilities Randomized Approximations for Min–sum Criteria
In this paper, we provide a new class of randomized approximation algorithms for scheduling problems by directly interpreting solutions to so-called time-indexed LPs as probabilities. The most general model we consider is scheduling unrelated parallel machines with release dates (or even network scheduling) so as to minimize the average weighted completion time. The crucial idea for these multi...
متن کاملAgent-based approach for cooperative scheduling
This paper studies the multi-factory production (MFP) network scheduling problem where a number of different individual factories join together to form a MFP network, in which these factories can operate more economically than operating individually. However, in such network which known as virtual production network with self-interested factories with transportation times, each individual facto...
متن کامل