Optogenetic Countering of Glial Acidosis Suppresses Glial Glutamate Release and Ischemic Brain Damage

نویسندگان

  • Kaoru Beppu
  • Takuya Sasaki
  • Kenji F. Tanaka
  • Akihiro Yamanaka
  • Yugo Fukazawa
  • Ryuichi Shigemoto
  • Ko Matsui
چکیده

The brain demands high-energy supply and obstruction of blood flow causes rapid deterioration of the healthiness of brain cells. Two major events occur upon ischemia: acidosis and liberation of excess glutamate, which leads to excitotoxicity. However, cellular source of glutamate and its release mechanism upon ischemia remained unknown. Here we show a causal relationship between glial acidosis and neuronal excitotoxicity. As the major cation that flows through channelrhodopsin-2 (ChR2) is proton, this could be regarded as an optogenetic tool for instant intracellular acidification. Optical activation of ChR2 expressed in glial cells led to glial acidification and to release of glutamate. On the other hand, glial alkalization via optogenetic activation of a proton pump, archaerhodopsin (ArchT), led to cessation of glutamate release and to the relief of ischemic brain damage in vivo. Our results suggest that controlling glial pH may be an effective therapeutic strategy for intervention of ischemic brain damage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Swelling of glial cells in lactacidosis and by glutamate: significance of Cl(-)-transport.

Swelling of glial and nerve cells is characteristic of brain damage in cerebral ischemia or trauma. The therapeutical efficiency of inhibition of Cl(-)-transport by a novel antagonist, the diuretic torasemide, on cytotoxic swelling of glial cells from lactacidosis, or glutamate was analyzed. Lactacidosis and the interstitial accumulation of glutamate are hallmarks of the pathophysiological alte...

متن کامل

Molecular Basis for Certain Neuroprotective Effects of Thyroid Hormone

The pathophysiology of brain damage that is common to ischemia-reperfusion injury and brain trauma include disodered neuronal and glial cell energetics, intracellular acidosis, calcium toxicity, extracellular excitotoxic glutamate accumulation, and dysfunction of the cytoskeleton and endoplasmic reticulum. The principal thyroid hormones, 3,5,3'-triiodo-l-thyronine (T(3)) and l-thyroxine (T(4)),...

متن کامل

Application of an optogenetic byway for perturbing neuronal activity via glial photostimulation.

Dynamic activity of glia has repeatedly been demonstrated, but if such activity is independent from neuronal activity, glia would not have any role in the information processing in the brain or in the generation of animal behavior. Evidence for neurons communicating with glia is solid, but the signaling pathway leading back from glial-to-neuronal activity was often difficult to study. Here, we ...

متن کامل

Inflammation after Ischemic Stroke: The Role of Leukocytes and Glial Cells

The immune response after stroke is known to play a major role in ischemic brain pathobiology. The inflammatory signals released by immune mediators activated by brain injury sets off a complex series of biochemical and molecular events which have been increasingly recognized as a key contributor to neuronal cell death. The primary immune mediators involved are glial cells and infiltrating leuk...

متن کامل

Methods and clinical applications of targeted temperature management

Hypoxic/ischemic brain damage is well-known catastrophic injury. The specific treatment, socalled neuroprotective therapy, aims to prevent or diminish this havoc damage. However, approved neuroprotective therapy in clinical practice is limited. Targeted temperature management (TTM) shows the most promising neuroprotective therapy. Moreover, TTM is also useful for intracranial pressure (ICP) con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 81  شماره 

صفحات  -

تاریخ انتشار 2014