Coordinate-wise Power Method
نویسندگان
چکیده
In this paper, we propose a coordinate-wise version of the power method from an optimization viewpoint. The vanilla power method simultaneously updates all the coordinates of the iterate, which is essential for its convergence analysis. However, different coordinates converge to the optimal value at different speeds. Our proposed algorithm, which we call coordinate-wise power method, is able to select and update the most important k coordinates in O(kn) time at each iteration, where n is the dimension of the matrix and k n is the size of the active set. Inspired by the “greedy” nature of our method, we further propose a greedy coordinate descent algorithm applied on a non-convex objective function specialized for symmetric matrices. We provide convergence analyses for both methods. Experimental results on both synthetic and real data show that our methods achieve up to 23 times speedup over the basic power method. Meanwhile, due to their coordinate-wise nature, our methods are very suitable for the important case when data cannot fit into memory. Finally, we introduce how the coordinatewise mechanism could be applied to other iterative methods that are used in machine learning.
منابع مشابه
Coordinate-Wise Versions Of The Grid Method For The Analysis Of Intensities Of Non-Stationary Information Flows By Moving Separation Of Mixtures Of Gamma-Distribution
A coordinate-wise modification of the grid method for separation of mixtures is proposed in the problem of the dynamical monitoring of the stochastic structure of information flows.
متن کاملA Coordinate-wise Optimization Algorithm for Sparse Inverse Covariance Selection
Sparse inverse covariance selection is a fundamental problem for analyzing dependencies in high dimensional data. However, such a problem is difficult to solve since it is NP-hard. Existing solutions are primarily based on convex approximation and iterative hard thresholding, which only lead to sub-optimal solutions. In this work, we propose a coordinate-wise optimization algorithm to solve thi...
متن کاملEfficient coordinate-wise leading eigenvector computation
We develop and analyze efficient ”coordinatewise” methods for finding the leading eigenvector, where each step involves only a vector-vector product. We establish global convergence with overall runtime guarantees that are at least as good as Lanczos’s method and dominate it for slowly decaying spectrum. Our methods are based on combining a shift-and-invert approach with coordinate-wise algorit...
متن کاملParallel Block Coordinate Minimization with Application to Group Regularized Regression
This paper proposes a method for parallel block coordinate-wise minimization for convex functions. Each iteration involves a first phase where n independent minimizations are performed over the n variable blocks, followed by a phase where the results of the first phase are coordinated to obtain the whole variable update. Convergence of the method to the global optimum is proved for functions co...
متن کاملLinear Convergence of the Randomized Feasible Descent Method Under the Weak Strong Convexity Assumption
In this paper we generalize the framework of the feasible descent method (FDM) to a randomized (R-FDM) and a coordinate-wise random feasible descent method (RC-FDM) framework. We show that the famous SDCA algorithm for optimizing the SVM dual problem, or the stochastic coordinate descent method for the LASSO problem, fits into the framework of RC-FDM. We prove linear convergence for both R-FDM ...
متن کامل