Cavity optomechanics: back-action at the mesoscale.
نویسندگان
چکیده
The coupling of optical and mechanical degrees of freedom is the underlying principle of many techniques to measure mechanical displacement, from macroscale gravitational wave detectors to microscale cantilevers used in scanning probe microscopy. Recent experiments have reached a regime where the back-action of photons caused by radiation pressure can influence the optomechanical dynamics, giving rise to a host of long-anticipated phenomena. Here we review these developments and discuss the opportunities for innovative technology as well as for fundamental science.
منابع مشابه
Information for “ A picogram and nanometer scale photonic crystal opto - mechanical cavity ”
These set of notes describe cavity optomechanics in the presence of additional thermo-optic tuning of the cavity resonance. We find that thermo-optic tuning results in correction factors to both the optical spring and optomechanical gain. In addition there is an overall saturation of the optomechanical coupling. These effects can be large for systems with large static thermo-optic tuning and fa...
متن کاملOptical cavity cooling of mechanical modes of a semiconductor nanomembrane
Mechanical oscillators can be optically cooled using a technique known as optical-cavity back-action. Cooling of composite metal–semiconductor mirrors, dielectric mirrors and dielectric membranes has been demonstrated. Here we report cavity cooling of mechanical modes in a high-quality-factor and optically active semiconductor nanomembrane. The cooling is a result of electron–hole generation by...
متن کاملCavity-Assisted Back Action Cooling of Mechanical Resonators
We analyze the quantum regime of the dynamical backaction cooling of a mechanical resonator assisted by a driven harmonic oscillator (cavity). Our treatment applies to both optomechanical and electromechanical realizations and includes the effect of thermal noise in the driven oscillator. In the perturbative case, we derive the corresponding motional master equation using the Nakajima-Zwanzig f...
متن کاملCavity optomechanics with Si3N4 membranes at cryogenic temperatures
We describe a cryogenic cavity-optomechanical system that combines Si3N4 membranes with a mechanically rigid Fabry–Perot cavity. The extremely high products of quality factor and frequency of the membranes allow us to cool a MHz mechanical mode to a phonon occupation of n̄ < 10, starting at a bath temperature of 5K. We show that even at cold temperatures thermally occupied mechanical modes of th...
متن کاملThermal noise and optomechanical features in the emission of a membrane-coupled compound cavity laser diode
We demonstrate the use of a compound optical cavity as linear displacement detector, by measuring the thermal motion of a silicon nitride suspended membrane acting as the external mirror of a near-infrared Littrow laser diode. Fluctuations in the laser optical power induced by the membrane vibrations are collected by a photodiode integrated within the laser, and then measured with a spectrum an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Science
دوره 321 5893 شماره
صفحات -
تاریخ انتشار 2008