The Complexity of Decentralized Control of Markov Decision Processes

نویسندگان

  • Daniel S. Bernstein
  • Shlomo Zilberstein
  • Neil Immerman
چکیده

Planning for distributed agents with partial state information is considered from a decisiontheoretic perspective. We describe generalizations of both the MDP and POMDP models that allow for decentralized control. For even a small number of agents, the finite-horizon problems corresponding to both of our models are complete for nondeterministic exponential time. These complexity results illustrate a fundamental difference between centralized and decentralized control of Markov processes. In contrast to the MDP and POMDP problems, the problems we consider provably do not admit polynomialtime algorithms and most likely require doubly exponential time to solve in the worst case. We have thus provided mathematical evidence corresponding to the intuition that decentralized planning problems cannot easily be reduced to centralized problems and solved exactly using established techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error-Bounded Approximations for Infinite-Horizon Discounted Decentralized POMDPs

We address decentralized stochastic control problems represented as decentralized partially observable Markov decision processes (Dec-POMDPs). This formalism provides a general model for decision-making under uncertainty in cooperative, decentralized settings, but the worst-case complexity makes it difficult to solve optimally (NEXP-complete). Recent advances suggest recasting Dec-POMDPs into c...

متن کامل

Accelerated decomposition techniques for large discounted Markov decision processes

Many hierarchical techniques to solve large Markov decision processes (MDPs) are based on the partition of the state space into strongly connected components (SCCs) that can be classified into some levels. In each level, smaller problems named restricted MDPs are solved, and then these partial solutions are combined to obtain the global solution. In this paper, we first propose a novel algorith...

متن کامل

Decentralized Advanced Model Predictive Controller of Fluidized-Bed for Polymerization Process

The control of fluidized-bed operations processes is still one of the major areas of research due to the complexity of the process and the inherent nonlinearity and varying dynamics involved in its operation. There are varieties of problems in chemical engineering that can be formulated as NonLinear Programming (NLPs). The quality of the developed solution significantly affects the performa...

متن کامل

Solving Transition Independent Decentralized Markov Decision Processes

Formal treatment of collaborative multi-agent systems has been lagging behind the rapid progress in sequential decision making by individual agents. Recent work in the area of decentralized Markov Decision Processes (MDPs) has contributed to closing this gap, but the computational complexity of these models remains a serious obstacle. To overcome this complexity barrier, we identify a specific ...

متن کامل

Average-Reward Decentralized Markov Decision Processes

Formal analysis of decentralized decision making has become a thriving research area in recent years, producing a number of multi-agent extensions of Markov decision processes. While much of the work has focused on optimizing discounted cumulative reward, optimizing average reward is sometimes a more suitable criterion. We formalize a class of such problems and analyze its characteristics, show...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Oper. Res.

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2000