A Non-homogeneous Boundary-value Problem for the Korteweg-de Vries Equation in a Quarter Plane

نویسندگان

  • JERRY L. BONA
  • S. M. SUN
چکیده

The Korteweg-de Vries equation was first derived by Boussinesq and Korteweg and de Vries as a model for long-crested small-amplitude long waves propagating on the surface of water. The same partial differential equation has since arisen as a model for unidirectional propagation of waves in a variety of physical systems. In mathematical studies, consideration has been given principally to pure initial-value problems where the wave profile is imagined to be determined everywhere at a given instant of time and the corresponding solution models the further wave motion. The practical, quantitative use of the Korteweg-de Vries equation and its relatives does not always involve the pure initial-value problem. Instead, initial-boundary-value problems often come to the fore. A natural example arises when modeling the effect in a channel of a wave maker mounted at one end, or in modeling near-shore zone motions generated by waves propagating from deep water. Indeed, the initial-boundary-value problem (0.1)  ηt + ηx + ηηx + ηxxx = 0, for x, t ≥ 0, η(x, 0) = φ(x), η(0, t) = h(t), studied here arises naturally as a model whenever waves determined at an entry point propagate into a patch of a medium for which disturbances are governed approximately by the Korteweg-de Vries equation. The present essay improves upon earlier work on (0.1) by making use of modern methods for the study of nonlinear dispersive wave equations. Speaking technically, local wellposedness is obtained for initial data φ in the class Hs(R+) for s > 3 4 and boundary data h in H (1+s)/3 loc (R +), whereas global well-posedness is shown to hold for φ ∈ Hs(R+), h ∈ H 7+3s 12 loc (R +) when 1 ≤ s ≤ 3, and for φ ∈ Hs(R+), h ∈ H loc (R+) when s ≥ 3. In addition, it is shown that the correspondence that associates to initial data φ and boundary data h the unique solution u of (0.1) is analytic. This implies, for example, that solutions may be approximated arbitrarily well by solving a finite number of linear problems. Received by the editors April 19, 2000 and, in revised form, January 8, 2001. 2000 Mathematics Subject Classification. Primary 35Q53; Secondary 76B03, 76B15.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The initial boundary problem for the Korteweg – de Vries equation on the negative quarter - plane

The initial boundary-value problem for the Korteweg–de Vries (KdV) equation on the negative quarter-plane, x < 0 and t > 0, is considered. The formulation of this problem is different to the usual initial boundary-value problem on the positive quarter-plane, for which x > 0 and t > 0. Two boundary conditions are required at x = 0 for the negative quarter-plane problem, in contrast to the one bo...

متن کامل

An initial-boundary value problem for the Korteweg-de Vries equation on the negative quarter-plane

In this paper, we consider an initial-boundary value problem for the Kortewegde Vries equation on the negative quarter-plane. The normalized Korteweg-de Vries equation considered is given by uτ + uux + uxxx = 0, x < 0, τ > 0, where x and τ represent dimensionless distance and time respectively. In particular, we consider the case when the initial and boundary conditions are given by u(x, 0) = u...

متن کامل

A Novel Approach for Korteweg-de Vries Equation of Fractional Order

In this study, the localfractional variational iterationmethod (LFVIM) and the localfractional series expansion method (LFSEM) are utilized to obtain approximate solutions for Korteweg-de Vries equation (KdVE) within local fractionalderivative operators (LFDOs). The efficiency of the considered methods is illustrated by some examples. The results reveal that the suggested algorithms are very ef...

متن کامل

Forced Oscillations of a Damped Korteweg-de Vries Equation in a Quarter Plane

Laboratory experiments have shown that when nonlinear, dispersive waves are forced periodically from one end of an undisturbed stretch of the medium of propagation, the signal eventually becomes temporally periodic at each spatial point. It is our purpose here to establish this as a fact at least in the context of a damped Korteweg-de Vries equation. Thus, consideration is given to the initial-...

متن کامل

Forced oscillations of a damped‎ ‎Korteweg-de Vries equation on a periodic domain

‎In this paper‎, ‎we investigate a damped Korteweg-de‎ ‎Vries equation with forcing on a periodic domain‎ ‎$mathbb{T}=mathbb{R}/(2pimathbb{Z})$‎. ‎We can obtain that if the‎ ‎forcing is periodic with small amplitude‎, ‎then the solution becomes‎ ‎eventually time-periodic.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001