Applying Data Mining to Assess Crash Risk on Curves
نویسندگان
چکیده
The wide range of contributing factors and circumstances surrounding crashes on road curves suggest that no single intervention can prevent these crashes. This paper presents a novel methodology, based on data mining techniques, to identify contributing factors and the relationship between them. It identifies contributing factors that influence the risk of a crash. Incident records, described using free text, from a large insurance company were analysed with rough set theory. Rough set theory was used to discover dependencies among data, and reasons using the vague, uncertain and imprecise information that characterised the insurance dataset. The results show that male drivers, who are between 50 and 59 years old, driving during evening peak hours are involved with a collision, had a lowest crash risk. Drivers between 25 and 29 years old, driving from around midnight to 6 am and in a new car has the highest risk. The analysis of the most significant contributing factors on curves suggests that drivers with driving experience of 25 to 42 years, who are driving a new vehicle have the highest crash cost risk, characterised by the vehicle running off the road and hitting a tree. This research complements existing statistically based tools approach to analyse road crashes. Our data mining approach is supported with proven theory and will allow road safety practitioners to effectively understand the dependencies between contributing factors and the crash type with the view to designing tailored countermeasures.
منابع مشابه
Forecasting Crash risk using Business Strategy, Equity Overvaluation and Conditional Skewness in Stock Price
A firm is called to have stock price crash risk if the firm has a tendency to experience a sudden drop in its stock price. In this study, the relation between the firm-level of business strategy and future stock price crash risk Is examined, as well as the effect of stock overvaluation on the relationship between business strategy and crash risk investigated. Using the strategy index and crash ...
متن کاملInvestigating the Effect of Business Strategy and Stock Price Synchronicity on Stock Price Crash Risk
Stock price crash risk has a significant impact on investors, creditors, managers, and shareholders, so the prediction of this phenomenon is a very important issue in investment and risk management decisions. This research investigates the effect of business strategy and stock price synchronicity on stock price crash risk. Following Bentley et al.[2], composite strategy score has been used to ...
متن کاملApplying a decision support system for accident analysis by using data mining approach: A case study on one of the Iranian manufactures
Uncertain and stochastic states have been always taken into consideration in the fields of risk management and accident, like other fields of industrial engineering, and have made decision making difficult and complicated for managers in corrective action selection and control measure approach. In this research, huge data sets of the accidents of a manufacturing and industrial unit have been st...
متن کامل, Mohamed Abdel - Aty Market basket analysis of crash data from large jurisdictions and its potential as a decision support tool
Data mining applications are becoming increasingly popular for many applications across a set of very divergent fields. Analysis of crash data is no exception. There are many data mining methodologies that have been applied to crash data in the recent past. However, one particular application conspicuously missing from the traffic safety literature until recently is association analysis or mark...
متن کاملApplication of data mining techniques for real-time crash risk assessment on freeways
Data mining is the analysis of large "observational" datasets to find unsuspected relationships that might be useful to the data owner. It typically involves analysis where objectives of the mining exercise have no bearing on the data collection strategy. Freeway traffic surveillance data collected through underground loop detectors is one such "observational" database maintained for various IT...
متن کامل