Novel syntactic foams made of ceramic hollow micro-spheres and starch – theory, structure and properties

نویسندگان

  • Md Mainul Islam
  • Ho Sung Kim
چکیده

Novel syntactic foams made of starch and ceramic hollow micro-spheres were developed. Foams of four different micro-sphere size groups were manufactured with either preor post-mould gelatinisation process. Compressive failure behaviour and mechanical properties were evaluated. Not much difference in failure behaviour or in mechanical properties between the two processes (preand post-mould gel) was found. Compressive failure of all syntactic foams was of shear on plane inclined 45° to compressive loading direction. Compressive strength and modulus of syntactic foams were found to be dependant mainly on binder content but mostly independent of micro-sphere size. Some conditions of relativity arising from properties of constituents leading to the rule of mixtures relationships for compressive strength and to understanding of compressive/transitional failure behaviour were developed. The developed relationships based on the rule of mixtures were partially verified.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compression and low-velocity impact behavior of aluminum syntactic foam

We report quasi-static compression and impact behavior of aluminum syntactic foams (ASF) produced by melt infiltration. Aluminum syntactic foams with relative density of 0.46 were produced using hollow alumina spheres (4.45 mm and 3.05 mm) randomly situated in a mold and two types of aluminum alloy (1100 and 6061). The impact behavior was investigated using an instrumented drop tower. We invest...

متن کامل

Predicting Mechanical Properties of Metal Matrix Syntactic Foams Reinforced with Ceramic Spheres

A model is presented that predicts peak stress, minimum stress, average stress, densification strain, and composite density in order to determine the energy absorption per unit volume and energy absorption per unit mass of metal matrix syntactic foams reinforced with hollow ceramic spheres subjected to unconstrained compression testing. Comparison of predictions to experimental data for Al-A206...

متن کامل

Compressive Behavior and Microstructural Characteristics of Iron Hollow Sphere Filled Aluminum Matrix Syntactic Foams

Iron hollow sphere filled aluminum matrix syntactic foams (AMSFs) were produced by low pressure, inert gas assisted infiltration. The microstructure of the produced AMSFs was investigated by light and electron microscopy, extended by energy dispersive X-ray spectroscopy and electron back-scattered diffraction. The investigations revealed almost perfect infiltration and a slight gradient in the ...

متن کامل

Synthesis and Quasi-Static Compressive Properties of Mg-AZ91D-Al2O3 Syntactic Foams

Magnesium alloys have considerably lower density than the aluminum alloy matrices that are typically used in syntactic foams, allowing for greater specific energy absorption. Despite the potential advantages, few studies have reported the properties of magnesium alloy matrix syntactic foams. In this work, Al₂O₃ hollow particles of three different size ranges, 0.106-0.212 mm, 0.212-0.425 mm, and...

متن کامل

Development and characterization of epoxy syntactic foam filled with epoxy hollow spheres

The present study focuses on the development and characterization of epoxy syntactic foam filled with epoxy hollow spheres (ESF/EHoS). The epoxy syntactic foam (ESF) was produced by embedding epoxy hollow spheres (EHoS) into a mixture of epoxy-hardener and 3% KOH solution. An innovative approach and simple procedure was implemented in the preparation of the EHoS where expanded polystyrene (EPS)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006