A Hvs Model for Representation of Domain-oriented Web Page Topic Features
نویسندگان
چکیده
Domain-oriented web page extraction is a new and practical direction in the field of information extraction. The paper focuses on the representation of domain-oriented web page topic features, and hierarchical vector space (HVS) model is put forward. Considering the hierarchical characteristics of the web page itself, topic features of the web page are expressed more effectively by HVS model from the facets of the page structure and the content. Then the topic-related page identification problem is discussed by the similarity calculation. Experimental results show good accuracy and applicability for our system to domain-oriented web extraction.
منابع مشابه
A Joint Semantic Vector Representation Model for Text Clustering and Classification
Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...
متن کاملA New Document Embedding Method for News Classification
Abstract- Text classification is one of the main tasks of natural language processing (NLP). In this task, documents are classified into pre-defined categories. There is lots of news spreading on the web. A text classifier can categorize news automatically and this facilitates and accelerates access to the news. The first step in text classification is to represent documents in a suitable way t...
متن کاملHierarchical Web Page Classification Based on a Topic Model and Neighboring Pages Integration
Most Web page classification models typically apply the bag of words (BOW) model to represent the feature space. The original BOW representation, however, is unable to recognize semantic relationships between terms. One possible solution is to apply the topic model approach based on the Latent Dirichlet Allocation algorithm to cluster the term features into a set of latent topics. Terms assigne...
متن کاملSample-oriented Domain Adaptation for Image Classification
Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...
متن کاملCompressed-Sampling-Based Image Saliency Detection in the Wavelet Domain
When watching natural scenes, an overwhelming amount of information is delivered to the Human Visual System (HVS). The optic nerve is estimated to receive around 108 bits of information a second. This large amount of information can’t be processed right away through our neural system. Visual attention mechanism enables HVS to spend neural resources efficiently, only on the selected parts of the...
متن کامل