Counteractive relationship between the interaction torque and muscle torque at the wrist is predestined in ball-throwing.

نویسندگان

  • Masaya Hirashima
  • Kunishige Ohgane
  • Kazutoshi Kudo
  • Kazunori Hase
  • Tatsuyuki Ohtsuki
چکیده

Many investigators have demonstrated that in swing motions such as ball-throwing, the motion of the proximal joint (shoulder) produced assistive interaction torque for the distal joint (elbow). In line with these studies, the shoulder and elbow motions would be expected to produce the assistive interaction torque for the wrist joint as well. However, we recently showed that the interaction torque at the wrist was always counteractive to the wrist muscle torque during ball-throwing. The purpose of this study is to clarify, by means of computer simulation, whether the counteractive relationship at the wrist during ball-throwing is caused by the neural contribution or the musculoskeletal mechanical properties of the human arm. First, we simulated the throwing motions of the normal forearm-hand model by systematically changing the proximal-to-distal delay of muscle activities and could line up two candidates for the determinant of the counteractive relationship: the rest angle (neutral angle) of the wrist and the length and mass of the hand. Second, we simulated the throwing motions of the virtual forearm-hand models, showing that only nonrealistic elongation of these two parameters produced the assistive relationship between the interaction torque and muscle torque. These results suggested that the mechanical properties of the human wrist are the main determinant of the counteractive relationship, which is advantageous for keeping the state of the wrist joint stable in multi-joint upper-limb movements and would lead to avoidance of excessive wrist extension or flexion and simplification of extrinsic finger control.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Utilization and compensation of interaction torques during ball-throwing movements.

The manner in which the CNS deals with interaction torques at each joint in ball throwing was investigated by instructing subjects to throw a ball at three different speeds, using two (elbow and wrist) or three joints (shoulder, elbow, and wrist). The results indicated that the role of the muscle torque at the most proximal joint was to accelerate the most proximal joint and to produce the effe...

متن کامل

Control of 3D limb dynamics in unconstrained overarm throws of different speeds performed by skilled baseball players.

This study investigated how the human CNS organizes complex three-dimensional (3D) ball-throwing movements that require both speed and accuracy. Skilled baseball players threw a baseball to a target at three different speeds. Kinematic analysis revealed that the fingertip speed at ball release was mainly produced by trunk leftward rotation, shoulder internal rotation, elbow extension, and wrist...

متن کامل

Joint torque utilization in throwing darts

In this study, we investigate the relationship between the skill level of subjects and their utilization of joint torque components, i.e., muscular torque, interaction torque and gravity torque. Results show that the subjects whose scores are high utilize the interaction torque of the elbow joint without shoulder displacement. Keywords— darts throwing, motion capturing, interaction torque

متن کامل

Effect of fatigue caused by a simulated handball game on ball throwing velocity, shoulder muscle strength and balance ratio: a prospective study.

BACKGROUND Arm throwing represents a deciding element in handball. Ball velocity, aim accuracy, and dynamic stability of the shoulder are factors that influence throwing effectiveness. The purpose of this study was to examine the influence of muscle fatigue caused by simulated game activities (SGA) on shoulder rotational isokinetic muscle strength, muscle balance and throwing performance, and t...

متن کامل

Kinetic chain of overarm throwing in terms of joint rotations revealed by induced acceleration analysis.

This study investigated how baseball players generate large angular velocity at each joint by coordinating the joint torque and velocity-dependent torque during overarm throwing. Using a four-segment model (i.e., trunk, upper arm, forearm, and hand) that has 13 degrees of freedom, we conducted the induced acceleration analysis to determine the accelerations induced by these torques by multiplyi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 90 3  شماره 

صفحات  -

تاریخ انتشار 2003