Exploration of genetically encoded voltage indicators based on a chimeric voltage sensing domain
نویسندگان
چکیده
Deciphering how the brain generates cognitive function from patterns of electrical signals is one of the ultimate challenges in neuroscience. To this end, it would be highly desirable to monitor the activities of very large numbers of neurons while an animal engages in complex behaviors. Optical imaging of electrical activity using genetically encoded voltage indicators (GEVIs) has the potential to meet this challenge. Currently prevalent GEVIs are based on the voltage-sensitive fluorescent protein (VSFP) prototypical design or on the voltage-dependent state transitions of microbial opsins. We recently introduced a new VSFP design in which the voltage-sensing domain (VSD) is sandwiched between a fluorescence resonance energy transfer pair of fluorescent proteins (termed VSFP-Butterflies) and also demonstrated a series of chimeric VSD in which portions of the VSD of Ciona intestinalis voltage-sensitive phosphatase are substituted by homologous portions of a voltage-gated potassium channel subunit. These chimeric VSD had faster sensing kinetics than that of the native Ci-VSD. Here, we describe a new set of VSFPs that combine chimeric VSD with the Butterfly structure. We show that these chimeric VSFP-Butterflies can report membrane voltage oscillations of up to 200 Hz in cultured cells and report sensory evoked cortical population responses in living mice. This class of GEVIs may be suitable for imaging of brain rhythms in behaving mammalians.
منابع مشابه
The evolving capabilities of rhodopsin-based genetically encoded voltage indicators.
Protein engineering over the past four years has made rhodopsin-based genetically encoded voltage indicators a leading candidate to achieve the task of reporting action potentials from a population of genetically targeted neurons in vivo. Rational design and large-scale screening efforts have steadily improved the dynamic range and kinetics of the rhodopsin voltage-sensing domain, and coupling ...
متن کاملLinker length and fusion site composition improve the optical signal of genetically encoded fluorescent voltage sensors.
Several genetically encoded fluorescent sensors of voltage were created by systematically truncating the length of the linker sequence between the voltage-sensing domain and the position of the fluorescent protein, Super Ecliptic A227D. In addition to varying the length, the amino acid composition at the fusion site for the fluorescent protein was modified. Both linker length and amino acid com...
متن کاملVoltage imaging with genetically encoded indicators.
Membrane voltages are ubiquitous throughout cell biology. Voltage is most commonly associated with excitable cells such as neurons and cardiomyocytes, although many other cell types and organelles also support electrical signaling. Voltage imaging in vivo would offer unique capabilities in reporting the spatial pattern and temporal dynamics of electrical signaling at the cellular and circuit le...
متن کاملExploration of Fluorescent Protein Voltage Probes Based on Circularly Permuted Fluorescent Proteins
Genetically encoded fluorescent protein (FP) voltage sensors are promising tools for optical monitoring of the electrical activity of cells. Over the last decade, several designs of fusion proteins have been explored and some of them have proven to be sensitive enough to record membrane voltage transients from single mammalian cells. Most prominent are the families of voltage sensitive fluoresc...
متن کاملCombinatorial mutagenesis of the voltage-sensing domain enables the optical resolution of action potentials firing at 60 Hz by a genetically encoded fluorescent sensor of membrane potential.
ArcLight is a genetically encoded fluorescent voltage sensor using the voltage-sensing domain of the voltage-sensing phosphatase from Ciona intestinalis that gives a large but slow-responding optical signal in response to changes in membrane potential (Jin et al., 2012). Fluorescent voltage sensors using the voltage-sensing domain from other species give faster yet weaker optical signals (Baker...
متن کامل