Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets
نویسندگان
چکیده
We present attribute bagging (AB), a technique for improving the accuracy and stability of classi#er ensembles induced using random subsets of features. AB is a wrapper method that can be used with any learning algorithm. It establishes an appropriate attribute subset size and then randomly selects subsets of features, creating projections of the training set on which the ensemble classi#ers are built. The induced classi#ers are then used for voting. This article compares the performance of our AB method with bagging and other algorithms on a hand-pose recognition dataset. It is shown that AB gives consistently better results than bagging, both in accuracy and stability. The performance of ensemble voting in bagging and the AB method as a function of the attribute subset size and the number of voters for both weighted and unweighted voting is tested and discussed. We also demonstrate that ranking the attribute subsets by their classi#cation accuracy and voting using only the best subsets further improves the resulting performance of the ensemble. ? 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
منابع مشابه
Proceedings of the Second Workshop on Feature Selection for Data Mining: Interfacing Machine Learning and Statistics
Filtered Attribute Subspace based Bagging with Injected Randomness (FASBIR) is a recently proposed algorithm for ensembles of k-nn classifiers [28]. FASBIR works by first performing a global filtering of attributes using information gain, then randomising the bagged ensemble with random subsets of the remaining attributes and random distance metrics. In this paper we propose two refinements of ...
متن کاملMethods for Improving Protein Disorder Prediction
In this paper we propose several methods for improving prediction of protein disorder. These include attribute construction from protein sequence, choice of classifier and postprocessing. While ensembles of neural networks achieved the higher accuracy, the difference as compared to logistic regression classifiers was smaller then 1%. Bagging of neural networks, where moving averages over window...
متن کاملAttribute Selection Methods for Filtered Attribute Subspace based Bagging with Injected Randomness (FASBIR)
Filtered Attribute Subspace based Bagging with Injected Randomness (FASBIR) is a recently proposed algorithm for ensembles of k-nn classifiers [28]. FASBIR works by first performing a global filtering of attributes using information gain, then randomising the bagged ensemble with random subsets of the remaining attributes and random distance metrics. In this paper we propose two refinements of ...
متن کاملAccurate Ensembles for Data Streams: Combining Restricted Hoeffding Trees using Stacking
The success of simple methods for classification shows that is is often not necessary to model complex attribute interactions to obtain good classification accuracy on practical problems. In this paper, we propose to exploit this phenomenon in the data stream context by building an ensemble of Hoeffding trees that are each limited to a small subset of attributes. In this way, each tree is restr...
متن کاملAn Approach for Assimilatiion of Classifier Ensembles on the Basis of Feature Selection and Diversity by Majority Voting and Bagging
A Classifier Ensemble (CE) efficiently improves the generalization ability of the classifier compared to a single classifier. This paper proposes an alternate approach for Integration of classifier ensembles. Initially three classifiers that are highly diverse and showed good classification accuracy when applied to six UCI (University of California, Irvine) datasets are selected. Then Feature S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 36 شماره
صفحات -
تاریخ انتشار 2003