Bounded Width Problems and Algebras

نویسنده

  • BENOIT LAROSE
چکیده

Let A be finite relational structure of finite type, and let CSP (A) denote the following decision problem: if I is a given structure of the same type as A, is there a homomorphism from I to A ? To each relational structure A is associated naturally an algebra A whose structure determines the complexity of the associated decision problem. We investigate those finite algebras arising from CSP’s of so-called bounded width, i.e. for which local consistency algorithms decide effectively the problem. We show that if a CSP has bounded width then the variety generated by the associated algebra omits the Hobby-McKenzie types 1 and 2. This provides a method to prove that certain CSP’s do not have bounded width: we give several applications, answering a question of Nešetřil and Zhu [26], by showing that various graph homomorphism problems do not have bounded width. Feder and Vardi [17] have shown that every CSP is polynomial-time equivalent to the retraction problem for a poset we call the Feder-Vardi poset of the structure. We show that, in the case where the structure has a single relation, if the retraction problem for the Feder-Vardi poset has bounded width then the CSP for the structure also has bounded width. This is used to exhibit a finite order-primal algebra whose variety admits type 2 but omits type 1 (provided P 6= NP).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Examples, Counterexamples, and Structure in Bounded Width Algebras

We study bounded width algebras which are minimal in the sense that every proper reduct does not have bounded width. We show that minimal bounded width algebras can be arranged into a pseudovariety with one basic ternary operation. We classify minimal bounded width algebras which have size at most three, and prove a structure theorem for minimal bounded width algebras which have no majority sub...

متن کامل

‎Bounded approximate connes-amenability of dual Banach algebras

 We study the notion of bounded approximate Connes-amenability for‎ ‎dual Banach algebras and characterize this type of algebras in terms‎ ‎of approximate diagonals‎. ‎We show that bounded approximate‎ ‎Connes-amenability of dual Banach algebras forces them to be unital‎. ‎For a separable dual Banach algebra‎, ‎we prove that bounded‎ ‎approximate Connes-amenability implies sequential approximat...

متن کامل

Bounded Approximate Character Amenability of Banach Algebras

The bounded approximate version of $varphi$-amenability and character amenability are introduced and studied. These new notions are characterized in several different ways, and some hereditary properties of them are established. The general theory for these concepts is also developed. Moreover, some examples are given to show that these notions are different from the others. Finally, bounded ap...

متن کامل

On bounded weak approximate identities and a new version of them

In this paper, we give a short survey of results and problems concerning the notion of bounded weak approximate identities in Banach algebras. Also, we introduce a new version of approximate identities and give one illuminating example to show the difference.

متن کامل

Weighted composition operators between Lipschitz algebras of complex-valued bounded functions

‎In this paper‎, ‎we study weighted composition operators between Lipschitz algebras of complex-valued bounded functions on metric spaces‎, ‎not necessarily compact‎. ‎We give necessary and sufficient conditions for the injectivity and the surjectivity of these operators‎. ‎We also obtain sufficient and necessary conditions for a weighted composition operator between these spaces to be compact.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005