Improving itaconic acid production through genetic engineering of an industrial Aspergillus terreus strain
نویسندگان
چکیده
BACKGROUND Itaconic acid, which has been declared to be one of the most promising and flexible building blocks, is currently used as monomer or co-monomer in the polymer industry, and produced commercially by Aspergillus terreus. However, the production level of itaconic acid hasn't been improved in the past 40 years, and mutagenesis is still the main strategy to improve itaconate productivity. The genetic engineering approach hasn't been applied in industrial A. terreus strains to increase itaconic acid production. RESULTS In this study, the genes closely related to itaconic acid production, including cadA, mfsA, mttA, ATEG_09969, gpdA, ATEG_01954, acoA, mt-pfkA and citA, were identified and overexpressed in an industrial A. terreus strain respectively. Overexpression of the genes cadA (cis-aconitate decarboxylase) and mfsA (Major Facilitator Superfamily Transporter) enhanced the itaconate production level by 9.4% and 5.1% in shake flasks respectively. Overexpression of other genes showed varied effects on itaconate production. The titers of other organic acids were affected by the introduced genes to different extent. CONCLUSIONS Itaconic acid production could be improved through genetic engineering of the industrially used A. terreus strain. We have identified some important genes such as cadA and mfsA, whose overexpression led to the increased itaconate productivity, and successfully developed a strategy to establish a highly efficient microbial cell factory for itaconate protuction. Our results will provide a guide for further enhancement of the itaconic acid production level through genetic engineering in future.
منابع مشابه
Expression of the Aspergillus terreus itaconic acid biosynthesis cluster in Aspergillus niger
BACKGROUND Aspergillus terreus is a natural producer of itaconic acid and is currently used to produce itaconic acid on an industrial scale. The metabolic process for itaconic acid biosynthesis is very similar to the production of citric acid in Aspergillus niger. However, a key enzyme in A. niger, cis-aconitate decarboxylase, is missing. The introduction of the A. terreus cadA gene in A. niger...
متن کاملProduction of Itaconic Acid through Submerged Fermentation Employing Different Species of Aspergillus
Itaconic acid was best produced by fungal species than bacterial species. The A. niger and A. terreus were known to be the best species for itaconic acid production among the different fungal species studied. However, there was no comprehensive study on using latest technologies for increasing the productivity at industrial level and it was not properly established. By keeping this in view, the...
متن کاملDirect production of itaconic acid from liquefied corn starch by genetically engineered Aspergillus terreus
BACKGROUND Itaconic acid is on the DOE (Department of Energy) top 12 list of biotechnologically produced building block chemicals and is produced commercially by Aspergillus terreus. However, the production cost of itaconic acid is too high to be economically competitive with the petrochemical-based products. Itaconic acid is generally produced from raw corn starch, including three steps: enzym...
متن کاملRewiring a secondary metabolite pathway towards itaconic acid production in Aspergillus niger
BACKGROUND The industrially relevant filamentous fungus Aspergillus niger is widely used in industry for its secretion capabilities of enzymes and organic acids. Biotechnologically produced organic acids promise to be an attractive alternative for the chemical industry to replace petrochemicals. Itaconic acid (IA) has been identified as one of the top twelve building block chemicals which have ...
متن کاملProduction of lovastatin and itaconic acid by Aspergillus terreus: a comparative perspective
Aspergillus terreus is a textbook example of an industrially relevant filamentous fungus. It is used for the biotechnological production of two valuable metabolites, namely itaconic acid and lovastatin. Itaconic acid serves as a precursor in polymer industry, whereas lovastatin found its place in the pharmaceutical market as a cholesterol-lowering statin drug and a precursor for semisynthetic s...
متن کامل