Chronic compression or acute dissociation of dorsal root ganglion induces cAMP-dependent neuronal hyperexcitability through activation of PAR2.

نویسندگان

  • Zhi-Jiang Huang
  • Hao-Chuan Li
  • Ashley A Cowan
  • Su Liu
  • Yan-Kai Zhang
  • Xue-Jun Song
چکیده

Chronic compression (CCD) or dissociation of dorsal root ganglion (DRG) can induce cyclic adenosine monophosphate (cAMP)-dependent DRG neuronal hyperexcitability and behaviorally expressed hyperalgesia. Here, we report that protease-activated receptor 2 (PAR2) activation after CCD or dissociation mediates the increase of cAMP activity and protein kinase A (PKA) and cAMP-dependent hyperexcitability and hyperalgesia in rats. CCD and dissociation, as well as trypsin (a PAR2 activator) treatment, increased level of cAMP concentration, mRNA, and protein expression for PKA subunits PKA-RII and PKA-c and protein expression of PAR2, in addition to producing neuronal hyperexcitability and, in CCD rats, thermal hyperalgesia. The increased expression of PAR2 was colocalized with PKA-c subunit. A PAR2 antagonistic peptide applied before and/or during the treatment, prevented or largely diminished the increased activity of cAMP and PKA, neuronal hyperexcitability, and thermal hyperalgesia. However, posttreatment with the PAR2 antagonistic peptide failed to alter either hyperexcitability or hyperalgesia. In contrast, an adenylyl cyclase inhibitor, SQ22536, administrated after dissociation or CCD, successfully suppressed hyperexcitability and hyperalgesia, in vitro and/or in vivo. Trypsin-induced increase of the intracellular calcium [Ca(2+)](i) was prevented in CCD or dissociation DRG neurons. These alterations were further confirmed by knockdown of PAR2 with siRNA. In addition, trypsin and PAR2 agonistic peptide-induced increase of cAMP was prevented by inhibition of PKC, but not Gαs. These findings suggest that PAR2 activation is critical to induction of nerve injury-induced neuronal hyperexcitability and cAMP-PKA activation. Inhibiting PAR2 activation may be a potential target for preventing/suppressing development of neuropathic pain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dissociation of dorsal root ganglion neurons induces hyperexcitability that is maintained by increased responsiveness to cAMP and cGMP.

Injury or inflammation affecting sensory neurons in dorsal root ganglia (DRG) causes hyperexcitability of DRG neurons that can lead to spontaneous firing and neuropathic pain. Recent results indicate that after chronic compression of DRG (CCD treatment), both hyperexcitability of neurons in intact DRG and behaviorally expressed hyperalgesia are maintained by concurrent activity in cAMP-protein ...

متن کامل

Enhanced excitability of dissociated primary sensory neurons after chronic compression of the dorsal root ganglion in the rat.

A chronic compression of the dorsal root ganglion (CCD) produces ipsilateral cutaneous hyperalgesia and allodynia in rats. Intracellular electrophysiological recordings from formerly compressed neurons in the intact dorsal root ganglion (DRG) reveal lower than normal current thresholds (CTs) and abnormal spontaneous activity (SA) (Zhang JM, Song XJ, LaMotte RH. Enhanced excitability of sensory ...

متن کامل

Activation of cGMP-PKG signaling pathway contributes to neuronal hyperexcitability and hyperalgesia after in vivo prolonged compression or in vitro acute dissociation of dorsal root ganglion in rats.

Injury or inflammation affecting sensory neurons in the dorsal root ganglia (DRG) causes hyperexcitability of DRG neurons that can lead to spinal central sensitization and neuropathic pain. Recent studies have indicated that, following chronic compression of DRG (CCD) or acute dissociation of DRG (ADD) treatment, both hyperexcitability of neurons in intact DRG and behaviorally expressed hyperal...

متن کامل

Inflammatory mediators enhance the excitability of chronically compressed dorsal root ganglion neurons.

A laterally herniated disk, spinal stenosis, and various degenerative or traumatic diseases of the spine can sometimes lead to a chronic compression and inflammation of the dorsal root ganglion and chronic abnormal sensations including pain. After a chronic compression of the dorsal root ganglion (CCD) in rats, the somata in the dorsal root ganglion (DRG) become hyperexcitable, and some exhibit...

متن کامل

Acutely dissociated sensory neurons: normal or neuropathic? Focus on: "Dissociation of dorsal root ganglion neurons induces hyperexcitability that is maintained by increased responsiveness to cAMP and cGMP".

The cell body of the primary nociceptive neuron, located in a ganglion, has an axon that bifurcates, one branch extending to the periphery, the other to the CNS. The cell body (soma) is big relative to the tiny size of its terminal axonal endings. Unlike its terminal ending, it is easily recorded electrophysiologically. Furthermore, when separated from its axon and cellular neighbors by the pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pain

دوره 153 7  شماره 

صفحات  -

تاریخ انتشار 2012