How pH modulates the dimer-decamer interconversion of 2-Cys peroxiredoxins from the Prx1 subfamily.
نویسندگان
چکیده
2-Cys peroxiredoxins belonging to the Prx1 subfamily are Cys-based peroxidases that control the intracellular levels of H2O2 and seem to assume a chaperone function under oxidative stress conditions. The regulation of their peroxidase activity as well as the observed functional switch from peroxidase to chaperone involves changes in their quaternary structure. Multiple factors can modulate the oligomeric transitions of 2-Cys peroxiredoxins such as redox state, post-translational modifications, and pH. However, the molecular basis for the pH influence on the oligomeric state of these enzymes is still elusive. Herein, we solved the crystal structure of a typical 2-Cys peroxiredoxin from Leishmania in the dimeric (pH 8.5) and decameric (pH 4.4) forms, showing that conformational changes in the catalytic loop are associated with the pH-induced decamerization. Mutagenesis and biophysical studies revealed that a highly conserved histidine (His(113)) functions as a pH sensor that, at acidic conditions, becomes protonated and forms an electrostatic pair with Asp(76) from the catalytic loop, triggering the decamerization. In these 2-Cys peroxiredoxins, decamer formation is important for the catalytic efficiency and has been associated with an enhanced sensitivity to oxidative inactivation by overoxidation of the peroxidatic cysteine. In eukaryotic cells, exposure to high levels of H2O2 can trigger intracellular pH variations, suggesting that pH changes might act cooperatively with H2O2 and other oligomerization-modulator factors to regulate the structure and function of typical 2-Cys peroxiredoxins in response to oxidative stress.
منابع مشابه
Catalytic Thr or Ser Residue Modulates Structural Switches in 2-Cys Peroxiredoxin by Distinct Mechanisms
Typical 2-Cys Peroxiredoxins (2-Cys Prxs) reduce hydroperoxides with extraordinary rates due to an active site composed of a catalytic triad, containing a peroxidatic cysteine (CP), an Arg, and a Thr (or Ser). 2-Cys Prx are involved in processes such as cancer; neurodegeneration and host-pathogen interactions. During catalysis, 2-Cys Prxs switch between decamers and dimers. Analysis of 2-Cys Pr...
متن کاملAnalysis of the link between enzymatic activity and oligomeric state in AhpC, a bacterial peroxiredoxin.
Peroxiredoxins (Prxs) make up a ubiquitous class (proposed EC 1.11.1.15) of cysteine-dependent peroxidases with roles in oxidant protection and signal transduction. An intriguing biophysical property of typical 2-Cys Prxs is the redox-dependent modulation of their oligomeric state between decamers and dimers at physiological concentrations. The functional consequences of this linkage are unknow...
متن کاملDimers to doughnuts: redox-sensitive oligomerization of 2-cysteine peroxiredoxins.
2-Cys peroxiredoxins (Prxs) are a large and diverse family of peroxidases which, in addition to their antioxidant functions, regulate cell signaling pathways, apoptosis, and differentiation. These enzymes are obligate homodimers (alpha(2)), utilizing a unique intermolecular redox-active disulfide center for the reduction of peroxides, and are known to form two oligomeric states: individual alph...
متن کاملDistinct characteristics of two 2-Cys peroxiredoxins of Vibrio vulnificus suggesting differential roles in detoxifying oxidative stress.
Peroxiredoxins (Prxs) are ubiquitous antioxidant enzymes reducing toxic peroxides. Two distinct 2-Cys Prxs, Prx1 and Prx2, were identified in Vibrio vulnificus, a facultative aerobic pathogen. Both Prxs have two conserved catalytic cysteines, C(P) and C(R), but Prx2 is more homologous in amino acid sequences to eukaryotic Prx than to Prx1. Prx2 utilized thioredoxin A as a reductant, whereas Prx...
متن کاملRepeated Superovulation via PMSG/hCG Administration Induces 2-Cys Peroxiredoxins Expression and Overoxidation in the Reproductive Tracts of Female Mice
Superovulation induced by exogenous gonadotropin treatment (PMSG/hCG) increases the number of available oocytes in humans and animals. However, Superovulatory PMSG/hCG treatment is known to affect maternal environment, and these effects may result from PMSG/hCG treatment-induced oxidative stress. 2-Cys peroxiredoxins (2-Cys Prxs) act as antioxidant enzymes that protect cells from oxidative stre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 290 13 شماره
صفحات -
تاریخ انتشار 2015