On univoque Pisot numbers

نویسندگان

  • Jean-Paul Allouche
  • Christiane Frougny
  • Kevin G. Hare
چکیده

We study Pisot numbers β ∈ (1, 2) which are univoque, i.e., such that there exists only one representation of 1 as 1 = P n≥1 snβ −n, with sn ∈ {0, 1}. We prove in particular that there exists a smallest univoque Pisot number, which has degree 14. Furthermore we give the smallest limit point of the set of univoque Pisot numbers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on univoque self-Sturmian numbers

We compare two sets of (infinite) binary sequences whose suffixes satisfy extremal conditions: one occurs when studying iterations of a unimodal continuous map from the unit interval into itself, but it also characterizes univoque real numbers; the other is an equivalent definition of characteristic Sturmian sequences. As a corollary to our study we obtain that a real number β in (1, 2) is univ...

متن کامل

A Certain Finiteness Property of Pisot Number Systems

In the study of substitutative dynamical systems and Pisot number systems, an algebraic condition, which we call ‘weak finiteness’, plays a fundamental role. It is expected that all Pisot numbers would have this property. In this paper, we prove some basic facts about ‘weak finiteness’. We show that this property is valid for cubic Pisot units and for Pisot numbers of higher degree under a domi...

متن کامل

Univoque numbers and an avatar of Thue-Morse

Univoque numbers are real numbers λ > 1 such that the number 1 admits a unique expansion in base λ, i.e., a unique expansion 1 = ∑ j≥0 ajλ −(j+1), with aj ∈ {0, 1, . . . , ⌈λ⌉ − 1} for every j ≥ 0. A variation of this definition was studied in 2002 by Komornik and Loreti, together with sequences called admissible sequences. We show how a 1983 study of the first author gives both a result of Kom...

متن کامل

On beta expansions for Pisot numbers

Given a number β > 1, the beta-transformation T = Tβ is defined for x ∈ [0, 1] by Tx := βx (mod 1). The number β is said to be a betanumber if the orbit {Tn(1)} is finite, hence eventually periodic. In this case β is the root of a monic polynomial R(x) with integer coefficients called the characteristic polynomial of β. If P (x) is the minimal polynomial of β, then R(x) = P (x)Q(x) for some pol...

متن کامل

Some computations on the spectra of Pisot and Salem numbers

Properties of Pisot numbers have long been of interest. One line of questioning, initiated by Erdős, Joó and Komornik in 1990, is the determination of l(q) for Pisot numbers q, where l(q) = inf(|y| : y = 0 + 1q + · · ·+ nq, i ∈ {±1, 0}, y 6= 0). Although the quantity l(q) is known for some Pisot numbers q, there has been no general method for computing l(q). This paper gives such an algorithm. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 76  شماره 

صفحات  -

تاریخ انتشار 2007