Brain-derived microparticles induce systemic coagulation in a murine model of traumatic brain injury.

نویسندگان

  • Ye Tian
  • Breia Salsbery
  • Min Wang
  • Hengjie Yuan
  • Jing Yang
  • Zilong Zhao
  • Xiaoping Wu
  • Yanjun Zhang
  • Barbara A Konkle
  • Perumal Thiagarajan
  • Min Li
  • Jianning Zhang
  • Jing-Fei Dong
چکیده

Traumatic brain injury (TBI) is associated with coagulopathy, although it often lacks 2 key risk factors: severe bleeding and significant fluid resuscitation associated with hemorrhagic shock. The pathogenesis of TBI-associated coagulopathy remains poorly understood. We tested the hypothesis that brain-derived microparticles (BDMPs) released from an injured brain induce a hypercoagulable state that rapidly turns into consumptive coagulopathy. Here, we report that mice subjected to fluid percussion injury (1.9 ± 0.1 atm) developed a BDMP-dependent hypercoagulable state, with peak levels of plasma glial cell and neuronal BDMPs reaching 17 496 ± 4833/μL and 18 388 ± 3657/μL 3 hours after TBI, respectively. Uninjured mice injected with BDMPs developed a dose-dependent hyper-turned hypocoagulable state measured by a progressively prolonged clotting time, fibrinogen depletion, and microvascular fibrin deposition in multiple organs. The BDMPs were 50 to 300 nm with intact membranes, expressing neuronal or glial cell markers and procoagulant phosphatidylserine and tissue factor. Their procoagulant activity was greater than platelet microparticles and was dose-dependently blocked by lactadherin. Microparticles were produced from injured hippocampal cells, transmigrated through the disrupted endothelial barrier in a platelet-dependent manner, and activated platelets. These data define a novel mechanism of TBI-associated coagulopathy in mice, identify early predictive markers, and provide alternative therapeutic targets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coagulopathy in the Setting of Mild Traumatic Brain Injury: Truths and Consequences

Mild traumatic brain injury (mTBI) is a common, although poorly-defined clinical entity. Despite its initially mild presentation, patients with mTBI can rapidly deteriorate, often due to significant expansion of intracranial hemorrhage. TBI-associated coagulopathy is the topic of significant clinical and basic science research. Unlike trauma-induced coagulopathy (TIC), TBI-associated coagulopat...

متن کامل

Induction of traumatic brain and spinal cord injury models in rat using a modified impactor device

Introduction: The use of standard rodent model, allows for the understanding of neuronal injury physiopathology and helping development of therapeutic strategies. Because of eliminating technical problems, we designed a modified impactor device with ability to induce different degrees according to kilodyne from very mild to very severe of spinal cord injury (SCI) and traumatic brain injury (TBI...

متن کامل

O13: Human Neural Stem/Progenitor Cells Derived from Epileptic Human Brain in A Self-Assembling Peptide Nanoscaffold Attenuates Neuroinlammation in Traumatic Brain Injury in Rats

Traumatic brain injury (TBI) is a disruption in the brain functions following a head trauma. Cell therapy may provide a promising treatment for TBI. Human neural stem cells cultured in self-assembling peptide scaffolds have been proposed as a potential novel method for cell replacement treatment after TBI. In the present study, we accessed the effects of human neural stem/progenitor cells (hNS/...

متن کامل

Cardiolipin-mediated procoagulant activity of mitochondria contributes to traumatic brain injury-associated coagulopathy in mice.

Cardiolipin (CL) is an anionic phospholipid located exclusively in the mitochondrial inner membrane. Its presence in blood indicates mitochondrial damage and release from injured cells. Here, we report the detection of CL-exposed brain-derived mitochondrial microparticles (mtMPs) at 17 547 ± 2677/μL in the peripheral blood of mice subjected to fluid percussion injury to the brain. These mtMPs a...

متن کامل

A Six-step Approach to Gain Higher Quality Results From ‎Organotypic Hippocampal Brain Slices in a Traumatic Brain ‎Injury Model

Background: Organotypic Hippocampal Brain Slices (OHBS) provide a better alternative to in vivo models to scrutinize Traumatic Brain Injury (TBI). We followed a well-established TBI protocol but noticed that several factors might influence the results in such a set-up. Here, we describe a structured approach to generate more comparable results and discuss why specific eligibility criteria shoul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 125 13  شماره 

صفحات  -

تاریخ انتشار 2015