Counting Convex Polygons in Planar Point Sets

نویسندگان

  • Joseph S. B. Mitchell
  • Günter Rote
  • Gopalakrishnan Sundaram
  • Gerhard J. Woeginger
چکیده

Given a set S of n points in the plane, we compute in time O(n) the total number of convex polygons whose vertices are a subset of S. We give an O(m n) algorithm for computing the number of convex k-gons with vertices in S, for all values k = 3; : : : ;m; previously known bounds were exponential (O(ndk=2e)). We also compute the number of empty convex polygons (resp., k-gons, k m) with vertices in S in time O(n) (resp., O(m n)).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Decompositions, Partitions, and Coverings with Convex Polygons and Pseudo-Triangles

We propose a novel subdivision of the plane that consists of both convex polygons and pseudo-triangles. This pseudo-convex decomposition is significantly sparser than either convex decompositions or pseudo-triangulations for planar point sets and simple polygons. We also introduce pseudo-convex partitions and coverings. We establish some basic properties and give combinatorial bounds on their c...

متن کامل

Decompositions, Partitions, and Coverings with Convex Polygons and Pseudo-triangles

We propose a novel subdivision of the plane that consists of both convex polygons and pseudo-triangles. This pseudo-convex decomposition is significantly sparser than either convex decompositions or pseudo-triangulations for planar point sets and simple polygons. We also introduce pseudo-convex partitions and coverings. We establish some basic properties and give combinatorial bounds on their c...

متن کامل

Planar Point Sets With Large Minimum Convex Decompositions

We show the existence of sets with n points (n > 4) for which every convex decomposition contains more than f§« — § polygons, which refutes the conjecture that for every set of n points there is a convex decomposition with at most n + C polygons. For sets having exactly three extreme points we show that more than n + s/2(n 3) 4 polygons may be necessary to form a convex decomposition.

متن کامل

On pseudo-convex decompositions, partitions, and coverings

We introduce pseudo-convex decompositions, partitions, and coverings for planar point sets. They are natural extensions of their convex counterparts and use both convex polygons and pseudo-triangles. We discuss some of their basic combinatorial properties and establish upper and lower bounds on their complexity.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Process. Lett.

دوره 56  شماره 

صفحات  -

تاریخ انتشار 1995