Gene expression and biochemical analysis of cheese-ripening yeasts: focus on catabolism of L-methionine, lactate, and lactose.

نویسندگان

  • Orianne Cholet
  • Alain Hénaut
  • Serge Casaregola
  • Pascal Bonnarme
چکیده

DNA microarrays of 86 genes from the yeasts Debaryomyces hansenii, Kluyveromyces marxianus, and Yarrowia lipolytica were developed to determine which genes were expressed in a medium mimicking a cheese-ripening environment. These genes were selected for potential involvement in lactose/lactate catabolism and the biosynthesis of sulfur-flavored compounds. Hybridization conditions to follow specifically the expression of homologous genes belonging to different species were set up. The microarray was first validated on pure cultures of each yeast; no interspecies cross-hybridization was observed. Expression patterns of targeted genes were studied in pure cultures of each yeast, as well as in coculture, and compared to biochemical data. As expected, a high expression of the LAC genes of K. marxianus was observed. This is a yeast that efficiently degrades lactose. Several lactate dehydrogenase-encoding genes were also expressed essentially in D. hansenii and K. marxianus, which are two efficient deacidifying yeasts in cheese ripening. A set of genes possibly involved in l-methionine catabolism was also used on the array. Y. lipolytica, which efficiently assimilates l-methionine, also exhibited a high expression of the Saccharomyces cerevisiae orthologs BAT2 and ARO8, which are involved in the l-methionine degradation pathway. Our data provide the first evidence that the use of a multispecies microarray could be a powerful tool to investigate targeted metabolism and possible metabolic interactions between species within microbial cocultures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of the Activity of the Microorganisms in a Reblochon-Style Cheese by Metatranscriptomic Analysis

The microbial communities in cheeses are composed of varying bacteria, yeasts, and molds, which contribute to the development of their typical sensory properties. In situ studies are needed to better understand their growth and activity during cheese ripening. Our objective was to investigate the activity of the microorganisms used for manufacturing a surface-ripened cheese by means of metatran...

متن کامل

Transcriptional analysis of L-methionine catabolism in the cheese-ripening yeast Yarrowia lipolytica in relation to volatile sulfur compound biosynthesis.

Yarrowia lipolytica is one of the yeasts most frequently isolated from the surface of ripened cheeses. In previous work, it has been shown that this yeast is able to convert L-methionine into various volatile sulfur compounds (VSCs) that may contribute to the typical flavors of several cheeses. In the present study, we show that Y. lipolytica does not assimilate lactate in the presence of L-met...

متن کامل

Biochemistry of cheese ripening

Rennet-coagulated cheeses are ripened for periods ranging from about two weeks to two or more years depending on variety. During ripening, microbiological and biochemical changes occur that result in the development of the flavour and texture characteristic of the variety. Biochemical changes in cheese during ripening may be grouped into primary (lipolysis, proteolysis and metabolism of residua...

متن کامل

Growth of Lactobacillus paracasei ATCC 334 in a cheese model system: a biochemical approach.

Growth of Lactobacillus paracasei ATCC 334, in a cheese-ripening model system based upon a medium prepared from ripening Cheddar cheese extract (CCE) was evaluated. Lactobacillus paracasei ATCC 334 grows in CCE made from cheese ripened for 2 (2mCCE), 6 (6mCCE), and 8 (8mCCE) mo, to final cell densities of 5.9×10(8), 1.2×10(8), and 2.1×10(7)cfu/mL, respectively. Biochemical analysis and mass bal...

متن کامل

Diversity of L-methionine catabolism pathways in cheese-ripening bacteria.

Enzymatic activities that could be involved in methanethiol generation in five cheese-ripening bacteria were assayed, and the major sulfur compounds produced were identified. L-Methionine and alpha-keto-gamma-methyl-thio-butyric acid demethiolating activities were detected in whole cells and cell extracts (CFEs) of all the bacteria tested. No L-methionine deaminase activity could be detected in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 73 8  شماره 

صفحات  -

تاریخ انتشار 2007