Detecting single-target changes in multiple object tracking: The case of peripheral vision.
نویسندگان
چکیده
In the present study, we investigated whether peripheral vision can be used to monitor multiple moving objects and to detect single-target changes. For this purpose, in Experiment 1, a modified multiple object tracking (MOT) setup with a large projection screen and a constant-position centroid phase had to be checked first. Classical findings regarding the use of a virtual centroid to track multiple objects and the dependency of tracking accuracy on target speed could be successfully replicated. Thereafter, the main experimental variations regarding the manipulation of to-be-detected target changes could be introduced in Experiment 2. In addition to a button press used for the detection task, gaze behavior was assessed using an integrated eyetracking system. The analysis of saccadic reaction times in relation to the motor response showed that peripheral vision is naturally used to detect motion and form changes in MOT, because saccades to the target often occurred after target-change offset. Furthermore, for changes of comparable task difficulties, motion changes are detected better by peripheral vision than are form changes. These findings indicate that the capabilities of the visual system (e.g., visual acuity) affect change detection rates and that covert-attention processes may be affected by vision-related aspects such as spatial uncertainty. Moreover, we argue that a centroid-MOT strategy might reduce saccade-related costs and that eyetracking seems to be generally valuable to test the predictions derived from theories of MOT. Finally, we propose implications for testing covert attention in applied settings.
منابع مشابه
Visual Tracking using Learning Histogram of Oriented Gradients by SVM on Mobile Robot
The intelligence of a mobile robot is highly dependent on its vision. The main objective of an intelligent mobile robot is in its ability to the online image processing, object detection, and especially visual tracking which is a complex task in stochastic environments. Tracking algorithms suffer from sequence challenges such as illumination variation, occlusion, and background clutter, so an a...
متن کاملDisentangling vision and attention in multiple-object tracking: How crowding and collisions affect gaze anchoring and dual-task performance.
Previous studies of multiple-object tracking have shown that gaze behavior is affected by target collisions and target-distractor crowding. Therefore, in order to experimentally disentangle this collision-crowding confound, we examined events of target collisions with the bordering frame and crowding with distractors. We hypothesized that collisions are particularly demanding for covert attenti...
متن کاملConvolutional Gating Network for Object Tracking
Object tracking through multiple cameras is a popular research topic in security and surveillance systems especially when human objects are the target. However, occlusion is one of the challenging problems for the tracking process. This paper proposes a multiple-camera-based cooperative tracking method to overcome the occlusion problem. The paper presents a new model for combining convolutiona...
متن کاملA Gravitational Search Algorithm-Based Single-Center of Mass Flocking Control for Tracking Single and Multiple Dynamic Targets for Parabolic Trajectories in Mobile Sensor Networks
Developing optimal flocking control procedure is an essential problem in mobile sensor networks (MSNs). Furthermore, finding the parameters such that the sensors can reach to the target in an appropriate time is an important issue. This paper offers an optimization approach based on metaheuristic methods for flocking control in MSNs to follow a target. We develop a non-differentiable optimizati...
متن کاملOnline multiple people tracking-by-detection in crowded scenes
Multiple people detection and tracking is a challenging task in real-world crowded scenes. In this paper, we have presented an online multiple people tracking-by-detection approach with a single camera. We have detected objects with deformable part models and a visual background extractor. In the tracking phase we have used a combination of support vector machine (SVM) person-specific classifie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Attention, perception & psychophysics
دوره 78 4 شماره
صفحات -
تاریخ انتشار 2016