An ontology of slums for image-based classification
نویسندگان
چکیده
0198-9715/$ see front matter 2011 Elsevier Ltd. A doi:10.1016/j.compenvurbsys.2011.11.001 ⇑ Corresponding author. Tel.: +31 (0) 53 4874228, fax: +31 (0) 53 4874575. E-mail addresses: [email protected] (D. Kohli) [email protected] (N. Kerle), [email protected] (A. Stein). URL: http://www.itc.nl (D. Kohli). Information about rapidly changing slum areas may support the development of appropriate interventions by concerned authorities. Often, however, traditional data collection methods lack information on the spatial distribution of slum-dwellers. Remote sensing based methods could be used for a rapid inventory of the location and physical composition of slums. (Semi-)automatic detection of slums in image data is challenging, owing to the high variability in appearance and definitions across different contexts. This paper develops an ontological framework to conceptualize slums using input from 50 domain-experts covering 16 different countries. This generic slum ontology (GSO) comprises concepts identified at three levels that refer to the morphology of the built environment: the environs level, the settlement level and the object level. It serves as a comprehensive basis for image-based classification of slums, in particular, using object-oriented image analysis (OOA) techniques. This is demonstrated by with an example of local adaptation of GSO and OOA parameterization for a study area in Kisumu, Kenya. At the object level, building and road characteristics are major components of the ontology. At the settlement level, texture measures can be potentially used to represent the contrast between planned and unplanned settlements. At the environs level, factors which extend beyond the site itself are important indicators, e.g. hazards due to floods plains and marshy conditions. The GSO provides a comprehensive framework that includes all potentially relevant indicators that can be used for image-based slum identification. These characteristics may be different for other study areas, but show the applicability of the developed framework. 2011 Elsevier Ltd. All rights reserved.
منابع مشابه
Local ontologies for object-based slum identification and classification
One of the consequences of rapid urbanization in developing countries is the proliferation of slums. Lack of quantified, updated and spatially disaggregated information on slums contributes to incomplete intervention and monitoring. The identification, delineation and characterization of slums spatially in a consistent manner will make it possible to target slum intervention programs as well as...
متن کاملTransferability of Object-Oriented Image Analysis Methods for Slum Identification
Updated spatial information on the dynamics of slums can be helpful to measure and evaluate progress of policies. Earlier studies have shown that semi-automatic detection of slums using remote sensing can be challenging considering the large variability in definition and appearance. In this study, we explored the potential of an object-oriented image analysis (OOA) method to detect slums, using...
متن کاملModified CLPSO-based fuzzy classification System: Color Image Segmentation
Fuzzy segmentation is an effective way of segmenting out objects in images containing both random noise and varying illumination. In this paper, a modified method based on the Comprehensive Learning Particle Swarm Optimization (CLPSO) is proposed for pixel classification in HSI color space by selecting a fuzzy classification system with minimum number of fuzzy rules and minimum number of incorr...
متن کاملObject-Based Classification of UltraCamD Imagery for Identification of Tree Species in the Mixed Planted Forest
This study is a contribution to assess the high resolution digital aerial imagery for semi-automatic analysis of tree species identification. To maximize the benefit of such data, the object-based classification was conducted in a mixed forest plantation. Two subsets of an UltraCam D image were geometrically corrected using aero-triangulation method. Some appropriate transformations were perfor...
متن کاملPalarimetric Synthetic Aperture Radar Image Classification using Bag of Visual Words Algorithm
Land cover is defined as the physical material of the surface of the earth, including different vegetation covers, bare soil, water surface, various urban areas, etc. Land cover and its changes are very important and influential on the Earth and life of living organisms, especially human beings. Land cover change monitoring is important for protecting the ecosystem, forests, farmland, open spac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers, Environment and Urban Systems
دوره 36 شماره
صفحات -
تاریخ انتشار 2012