Finding Planted Subgraphs with Few Eigenvalues using the Schur-Horn Relaxation
نویسندگان
چکیده
Extracting structured subgraphs inside large graphs – often known as the planted subgraph problem – is a fundamental question that arises in a range of application domains. This problem is NP-hard in general, and as a result, significant efforts have been directed towards the development of tractable procedures that succeed on specific families of problem instances. We propose a new computationally efficient convex relaxation for solving the planted subgraph problem; our approach is based on tractable semidefinite descriptions of majorization inequalities on the spectrum of a symmetric matrix. This procedure is effective at finding planted subgraphs that consist of few distinct eigenvalues, and it generalizes previous convex relaxation techniques for finding planted cliques. Our analysis relies prominently on the notion of spectrally comonotone matrices, which are pairs of symmetric matrices that can be transformed to diagonal matrices with sorted diagonal entries upon conjugation by the same orthogonal matrix. Keywords— convex optimization; distance-regular graphs; induced subgraph isomorphism; majorization; orbitopes; semidefinite programming; strongly regular graphs.
منابع مشابه
On Constructing Matrices with Prescribed Singular Values and Diagonal Elements
Similar to the well known Schur Horn theorem that characterizes the relationship between the diagonal entries and the eigenvalues of a Hermitian matrix the Sing Thompson theorem characterizes the relationship between the diagonal en tries and the singular values of an arbitrary matrix It is noted in this paper that based on the induction principle such a matrix can be constructed numerically by...
متن کاملAn Algorithm of Ordered Schur Factorization For Real Nonsymmetric Matrix
In this paper, we present an algorithm for computing a Schur factorization of a real nonsymmetric matrix with ordered diagonal blocks such that upper left blocks contains the largest magnitude eigenvalues. Especially in case of multiple eigenvalues, when matrix is non diagonalizable, we construct an invariant subspaces with few additional tricks which are heuristic and numerical results shows t...
متن کاملGradient Flow Methods for Matrix Completion with Prescribed Eigenvalues
Abstract. Matrix completion with prescribed eigenvalues is a special type of inverse eigenvalue problems. The goal is to construct a matrix subject to the structural constraint of prescribed entries and the spectral constraint of prescribed spectrum. The challenge of such a completion problem lies in the intertwining of the cardinality and the location of the prescribed entries so that the inve...
متن کاملA preconditioning technique for Schur complement systems arising in stochastic optimization
Deterministic sample average approximations of stochastic programming problems with recourse are suitable for a scenario-based parallelization. In this paper the parallelization is obtained by using an interior-point method and a Schur complement mechanism for the interior-point linear systems. However, the direct linear solves involving the dense Schur complement matrix are expensive, and adve...
متن کاملDiagonals of Self-adjoint Operators
The eigenvalues of a self-adjoint n×n matrix A can be put into a decreasing sequence λ = (λ1, . . . , λn), with repetitions according to multiplicity, and the diagonal of A is a point of R that bears some relation to λ. The Schur-Horn theorem characterizes that relation in terms of a system of linear inequalities. We prove an extension of the latter result for positive trace-class operators on ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1605.04008 شماره
صفحات -
تاریخ انتشار 2016