Loop Differential K-theory
نویسندگان
چکیده
In this paper we introduce an equivariant extension of the ChernSimons form, associated to a path of connections on a bundle over a manifold M , to the free loop space LM , and show it determines an equivalence relation on the set of connections on a bundle. We use this to define a ring, loop differential K-theory of M , in much the same way that differential K-theory can be defined using the Chern-Simons form [SS]. We show loop differential K-theory yields a refinement of differential K-theory, and in particular incorporates holonomy information into its classes. Additionally, loop differential K-theory is shown to be strictly coarser than the Grothendieck group of bundles with connection up to gauge equivalence. Finally, we calculate loop differential K-theory of the circle.
منابع مشابه
3D Scene and Object Classification Based on Information Complexity of Depth Data
In this paper the problem of 3D scene and object classification from depth data is addressed. In contrast to high-dimensional feature-based representation, the depth data is described in a low dimensional space. In order to remedy the curse of dimensionality problem, the depth data is described by a sparse model over a learned dictionary. Exploiting the algorithmic information theory, a new def...
متن کاملActive Noise Cancellation using Online Wavelet Based Control System: Numerical and Experimental Study
Reaction wheels (RWs) used for attitude control of space vehicle systems usually encounter with undesired wide band noises. These noises which significantly affect the performance of regulator controller must tune the review or review rate of RWs. According to wide frequency band of noises in RWs the common approaches of noise cancellation cannot conveniently reduce the effects of the noise. Th...
متن کاملa Comparative Theoretical Analysis for a Knitted Loop Model
The theory presented in this paper differs from previous ones in that no arbitrary loop shape is assumed. Rather a strophoid curve, that is similar to knitted fabric Loop shape, has been assumed as the basic mathematical function. Additionally, the theory is improved by adapting buckled elastic rod theory, leading to a new equation from a certain mathematical curve. This loop model is assumed t...
متن کاملSemi-topological K-theory Using Function Complexes
Abstract. The semi-topological K-theory K ∗ (X) of a quasi-projective complex algebraic variety X is based on the notion of algebraic vector bundles modulo algebraic equivalence. This theory is given as the homotopy groups of an infinite loop space K(X) which is equipped with maps K(X) → K(X), K(X) → Ktop(Xan) whose composition is the natural map from the algebraic K-theory of X to the topologi...
متن کاملA Loop Group Extension of the Odd Chern Character
We show that the universal odd Chern form, defined on the stable unitary group U , extends to the loop group LU as an equivariantly closed differential form. This provides an odd analogue to the Bismut-Chern form that appears in supersymmetric field theories. We also describe the associated transgression form, the so-called Bismut-Chern-Simons form, and explicate some properties it inherits as ...
متن کامل