Construction of fractional spline wavelet bases
نویسندگان
چکیده
We extend Schoenberg's B-splines to all fractional degrees α > − 2 . These splines are constructed using linear combinations of the integer shifts of the power functions x+ α (one-sided) or x * α (symmetric); in each case, they are αHölder continuous for α > 0. They satisfy most of the properties of the traditional B-splines; in particular, the Riesz basis condition and the two-scale relation, which makes them suitable for the construction of new families of wavelet bases. What is especially interesting from a wavelet perspective is that the fractional B-splines have a fractional order o f approximation ( α + 1), while they reproduce the polynomials of degree α . We show how they yield continuous-order generalizations of the orthogonal Battle-Lemarie wavelets and of the semi-orthogonal B-spline wavelets. As α increases, these latter wavelets tend to be optimally localized in time and frequency in the sense specified by the uncertainty principle. The corresponding analysis wavelets also behave like fractional differentiators; they may therefore be used to whiten fractional Brownian motion processes.
منابع مشابه
(Microsoft Word - spie2003.doc)
We show that a multi-dimensional scaling function of order γ (possibly fractional) can always be represented as the convolution of a polyharmonic B-spline of order γ and a distribution with a bounded Fourier transform which has neither order nor smoothness. The presence of the B-spline convolution factor explains all key wavelet properties: order of approximation, reproduction of polynomials, v...
متن کاملQuartic and pantic B-spline operational matrix of fractional integration
In this work, we proposed an effective method based on cubic and pantic B-spline scaling functions to solve partial differential equations of fractional order. Our method is based on dual functions of B-spline scaling functions. We derived the operational matrix of fractional integration of cubic and pantic B-spline scaling functions and used them to transform the mentioned equations to a syste...
متن کاملFractional Splines , Wavelet Bases
The purpose of this presentation is to describe a recent family of basis functions—the fractional B-splines—which appear to be intimately connected to fractional calculus. Among other properties, we show that they are the convolution kernels that link the discrete (finite differences) and continuous (derivatives) fractional differentiation operators. We also provide simple closed forms for the ...
متن کاملSelf-similarity, Fractal Models and Spline Approximation
Invariance is an attractive principle for specifying image processing algorithms. In this presentation, we concentrate on self-similarity—more precisely, shift, scale and rotation invariance—and identify the corresponding class of operators in d dimensions. For d = 1, there is no rotation and the scale-invariant differential operators are the fractional derivatives: ∂ γ τ ←→ (− jω) γ 2−τ( jω) γ...
متن کاملConstruction of Orthonormal Piecewise Polynomial Scaling and Wavelet Bases on Non-Equally Spaced Knots
This paper investigates the mathematical framework of multiresolution analysis based on irregularly spaced knots sequence. Our presentation is based on the construction of nested nonuniform spline multiresolution spaces. From these spaces, we present the construction of orthonormal scaling and wavelet basis functions on bounded intervals. For any arbitrary degree of the spline function, we prov...
متن کامل