Neuroretinal cell death in a murine model of closed globe injury: pathological and functional characterization.

نویسندگان

  • Richard J Blanch
  • Zubair Ahmed
  • Attila Sik
  • David R J Snead
  • Peter A Good
  • Jenna O'Neill
  • Martin Berry
  • Robert A H Scott
  • Ann Logan
چکیده

PURPOSE Blunt ocular trauma causes severe retinal injury with death of neuroretinal tissue, scarring, and permanent visual loss. The mechanisms of cell death are not known, and there are no therapeutic interventions that improve visual outcome. We aimed to study the extent, distribution, and functional consequences of cell death by developing and characterizing a rat model of retinal injury caused by blunt ocular trauma. METHODS The eyes of anesthetized adult rats were injured by either weight drop or low-velocity ballistic trauma and assessed by clinical examination, electroretinography, light microscopy, electron microscopy, and TUNEL. Projectile velocity was measured and standardized. RESULTS Weight drop did not cause reproducible retinal injury, and the energy threshold for retinal injury was similar to that for rupture. Low-velocity ballistic trauma to the inferior sclera created a reproducible retinal injury, with central sclopetaria retinae, retinal necrosis, and surrounding commotio retinae with specific photoreceptor cell death and sparing of cells in the other retinal layers. The extent of photoreceptor cell death declined and necrosis progressed to apoptosis with increasing distance from the impact site. CONCLUSIONS This is the only murine model of closed globe injury and the only model of retinal trauma with specific photoreceptor cell death. The clinical appearance mirrors that in severe retinal injury after blunt ocular trauma in humans, and the ultrastructural features are consistent with human and animal studies of commotio retinae. After ocular trauma, photoreceptor apoptosis may be prevented and visual outcomes improved by blocking of the cell death pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transplanting P75-Suppressed Bone Marrow Stromal Cells Promotes Functional Behavior in a Rat Model of Spinal Cord Injury

Background: Bone marrow stromal cells (BMSC) have been successfully employed for movement deficit recovery in spinal cord injury (SCI) rat models. One of the unsettled problems in cell transplantation is the relative high proportion of cell death, specifically after neural differentiation. According to our previous studies, p75 receptor, known as the death receptor, is only expressed in BMSC in...

متن کامل

Apoptosis, Autophagy, and Necrosis in Murine Embryonic Gonadal Ridges and Neonatal Ovaries: An Animal Model

Background: In mammalian ovaries, loss of over two-thirds of germ cells happens due to cell death. Nonetheless, the exact mechanism of cell death has yet to be determined. The present basic practical study was designed to detect 3 types of programmed cell death, namely apoptosis, autophagy, and necrosis, in murine embryonic gonadal ridges and neonatal ovaries.Methods: Twenty gonadal ridges and ...

متن کامل

Decrease in Cavity Size and Oligodendrocyte Cell Death Using Neurosphere-Derived Oligodendrocyte-Like Cells in Spinal Cord Contusion Model

Background: Oligodendrocyte cell death is among the important features of spinal cord injury, which appears within 15 min and occurs intensely for 4 h after injury, in the rat spinal contusion model. Accordingly, the number of oligodendrocytes progressively reduced within 24 h after injury. Administration of oligodendrocyte-like cells (OLCs) into the lesion area is one of the approaches to coun...

متن کامل

Animal models of retinal injury.

Retinal injury is a common cause of profound and intractable loss of vision. Clinical outcomes are poor in both open and closed globe injuries because cell death, scarring, and a failure of tissue and axon regeneration are not ameliorated by current treatments. Much animal research is directed at understanding and modifying these pathologies, although results have yet to translate into clinica...

متن کامل

O 24: Functional Role of The K2p Potassium Channel Task-3 in A Syngeneic Murine Glioma Model

To investigate the effects of the two-pore-domain potassium (K2P) channel TASK-3 in a syngeneic murine model for malignant glioma. Malignant or high-grade glioma (WHO grade III and IV) are the most common and most aggressive primary brain tumors in adults. Despite aggressive multimodal therapy, the outcome of patients with malignant glioma remains poor. However, recent phase I and II trials hav...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Investigative ophthalmology & visual science

دوره 53 11  شماره 

صفحات  -

تاریخ انتشار 2012