Differential effect of central command on aortic and carotid sinus baroreceptor-heart rate reflexes at the onset of spontaneous, fictive motor activity.

نویسندگان

  • Kanji Matsukawa
  • Kei Ishii
  • Akito Kadowaki
  • Nan Liang
  • Tomoko Ishida
چکیده

Our laboratory has reported that central command blunts the sensitivity of the aortic baroreceptor-heart rate (HR) reflex at the onset of voluntary static exercise in conscious cats and spontaneous contraction in decerebrate cats. The purpose of this study was to examine whether central command attenuates the sensitivity of the carotid sinus baroreceptor-HR reflex at the onset of spontaneous, fictive motor activity in paralyzed, decerebrate cats. We confirmed that aortic nerve (AN)-stimulation-induced bradycardia was markedly blunted to 26 ± 4.4% of the control (21 ± 1.3 beats/min) at the onset of spontaneous motor activity. Although the baroreflex bradycardia by electrical stimulation of the carotid sinus nerve (CSN) was suppressed (P < 0.05) to 86 ± 5.6% of the control (38 ± 1.2 beats/min), the inhibitory effect of spontaneous motor activity was much weaker (P < 0.05) with CSN stimulation than with AN stimulation. The baroreflex bradycardia elicited by brief occlusion of the abdominal aorta was blunted to 36% of the control (36 ± 1.6 beats/min) during spontaneous motor activity, suggesting that central command is able to inhibit the cardiomotor sensitivity of arterial baroreflexes as the net effect. Mechanical stretch of the triceps surae muscle never affected the baroreflex bradycardia elicited by AN or CSN stimulation and by aortic occlusion, suggesting that muscle mechanoreflex did not modify the cardiomotor sensitivity of aortic and carotid sinus baroreflex. Since the inhibitory effect of central command on the carotid baroreflex pathway, associated with spontaneous motor activity, was much weaker compared with the aortic baroreflex pathway, it is concluded that central command does not force a generalized modulation on the whole pathways of arterial baroreflexes but provides selective inhibition for the cardiomotor component of the aortic baroreflex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Signal transduction of aortic and carotid sinus baroreceptors is not modified by central command during spontaneous motor activity in decerebrate cats.

Our laboratory has suggested that central command provides selective inhibition of the cardiomotor component of aortic baroreflex at the start of exercise, preserving carotid sinus baroreflex. It is postulated that central command may modify the signal transduction of aortic baroreceptors, so as to decrease aortic baroreceptor input to the cardiovascular centers, and, thereby, can cause the sel...

متن کامل

Central command does not suppress baroreflex control of cardiac sympathetic nerve activity at the onset of spontaneous motor activity in the decerebrate cat.

Our laboratory has reported that central command blunts the sensitivity of the aortic baroreceptor-heart rate (HR) reflex at the onset of voluntary static exercise in animals. We have examined whether baroreflex control of cardiac sympathetic nerve activity (CSNA) and/or cardiovagal baroreflex sensitivity are altered at the onset of spontaneously occurring motor behavior, which was monitored wi...

متن کامل

Central command: control of cardiac sympathetic and vagal efferent nerve activity and the arterial baroreflex during spontaneous motor behaviour in animals.

Feedforward control by higher brain centres (termed central command) plays a role in the autonomic regulation of the cardiovascular system during exercise. Over the past 20 years, workers in our laboratory have used the precollicular-premammillary decerebrate animal model to identify the neural circuitry involved in the CNS control of cardiac autonomic outflow and arterial baroreflex function. ...

متن کامل

MLR-induced inhibition of barosensory cells in the NTS.

A central motor command arising from the mesencephalic locomotor region (MLR) is widely believed to be one of the neural mechanisms that reset the baroreceptor reflex upward during exercise. The nucleus tractus solitarius (NTS), a dorsal medullary site that receives input from baroreceptors, may be the site where central command inhibits baroreceptor input during exercise. We, therefore, examin...

متن کامل

Central command does not decrease cardiac parasympathetic efferent nerve activity during spontaneous fictive motor activity in decerebrate cats.

To examine whether withdrawal of cardiac vagal efferent nerve activity (CVNA) predominantly controls the tachycardia at the start of exercise, the responses of CVNA and cardiac sympathetic efferent nerve activity (CSNA) were directly assessed during fictive motor activity that occurred spontaneously in unanesthetized, decerebrate cats. CSNA abruptly increased by 71 ± 12% at the onset of the mot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 303 4  شماره 

صفحات  -

تاریخ انتشار 2012