Electron correlation effects in small iron clusters
نویسنده
چکیده
We present results of first-principles calculations of structural, magnetic, and electronic properties of small Fe clusters. It is shown that, while the lowest-energy isomers of Fe3 and Fe4 obtained in the framework of density functional theory within the generalized gradient approximation (GGA) are characterized by Jahn-Teller-like distortions away from the most regular shapes (which is in agreement with other works), these distortions are reduced when electron correlation effects are considered explicitly as within the GGA+U approach. At the same time, the magnetic moments of the clusters are enhanced with respect to the pure GGA case, resulting in maximal moments (in the sense of Hund’s rules) of 4 μB per atom for the ground state structures of Fe3 and Fe4, and a total moment of 18 μB for Fe5. This already happens for moderate values of the Coulomb repulsion parameter U ∼ 2.0 eV and is explained by changes in the electronic structures of the clusters.
منابع مشابه
A DFT + DMFT approach for nanosystems.
We propose a combined density-functional-theory-dynamical-mean-field-theory (DFT + DMFT) approach for reliable inclusion of electron-electron correlation effects in nanosystems. Compared with the widely used DFT + U approach, this method has several advantages, the most important of which is that it takes into account dynamical correlation effects. The formalism is illustrated through different...
متن کاملA STUDY OF SMALL VACANCY CLUSTERS IN IRON USING MANY BODY POTENTIAL
Computer simulation techniques are employed to obtain binding energies of 2,3 and 4 vacancy clusters in a -iron using the Finnis Sinclair many body potential. The results are compared with earlier pair potential calculations. The many body potential is found to be quite successful in simulating vacancy clusters
متن کاملMagnetic Properties of Transition Metal Nanoparticles: A DFT-Inhomogeneous-DMFT Analysis
To include electron-electron correlation effects in the nanosystem we are proposing a combined density-functional-theorydynamical-mean-field-theory (DFT + DMFT) approach, which we have recently shown to be suitable for including correlation effects in small (2-5 atoms) Fe and FePt clusters [1]. This method has several advantages as compared to the widely used DFT + U approach, the most importan...
متن کاملElectron correlation effects in the Fe dimer.
The potential energy surface of the Fe dimer is investigated on the basis of density functional theory in the generalized gradient approximation (GGA). Electron correlation effects are taken into account explicitly within the GGA+U approach. We find a value of 2.20 eV for the Coulomb repulsion parameter U to describe the Fe dimer best, yielding a 9 Sigma(g)- ground state with an interatomic sep...
متن کاملInvestigation of structural and electronic properties of small Au n Cu m (n+m≤5) nano-clusters for Oxygen adsorption
In this study, the structures, the IR spectroscopy, and the electronic properties of AunCum (n+m≤5) bimetallic clusters were studied and compared with those of pure gold and copper clusters using the generalized gradient approximation (GGA) and exchange correlation density functional theory (DFT). The study of an O2-AunCum system is important to identify the promotion effects of each of the two...
متن کامل