Muscle coordination of maximum-speed pedaling.

نویسندگان

  • C C Raasch
  • F E Zajac
  • B Ma
  • W S Levine
چکیده

A simulation based on a forward dynamical musculoskeletal model was computed from an optimal control algorithm to understand uni- and bi-articular muscle coordination of maximum-speed startup pedaling. The muscle excitations, pedal reaction forces, and crank and pedal kinematics of the simulation agreed with measurements from subjects. Over the crank cycle, uniarticular hip and knee extensor muscles provide 55% of the propulsive energy, even though 27% of the amount they produce in the downstroke is absorbed in the upstroke. Only 44% of the energy produced by these muscles during downstroke is delivered to the crank directly. The other 56% is delivered to the limb segments, and then transferred to the crank by the ankle plantarflexors. The plantarflexors, especially soleus, also prevent knee hyperextension, by slowing the knee extension being produced during downstroke by the other muscles, including hamstrings. Hamstrings and rectus femoris make smooth pedaling possible by propelling the crank through the stroke transitions. Other simulations showed that pedaling can be performed well by partitioning all the muscles in a leg into two pairs of phase-controlled alternating functional groups, with each group also alternating with its contralateral counterpart. In this scheme, the uniarticular hip/knee extensor muscles (one group) are excited during downstroke, and the uniarticular hip/knee flexor muscles (the alternating group) during upstroke. The ankle dorsiflexor and rectus femoris muscles (one group of the other pair) are excited near the transition from upstroke to downstroke, and the ankle plantarflexors and hamstrings muscles (the alternating group) during the downstroke to upstroke transition. We conclude that these alternating functional muscle groups might represent a centrally generated primitive for not only pedaling but also other locomotor tasks as well.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coordination of hemiparetic locomotion after stroke rehabilitation.

OBJECTIVES Determine whether a rehabilitation program targeting functional motor recovery of persons with poststroke hemiparesis improved motor coordination. METHODS A subgroup of 20 persons with poststroke hemiparesis (n = 11 in intervention and n =9 in control group) was investigated from within a larger randomized controlled single-blind clinical trial of 100 patients. Motor coordination w...

متن کامل

Contralateral movement and extensor force generation alter flexion phase muscle coordination in pedaling.

The importance of bilateral sensorimotor signals in coordination of locomotion has been demonstrated in animals but is difficult to ascertain in humans due to confounding effects of mechanical transmission of forces between the legs (i.e., mechanical interleg coupling). In a previous pedaling study, by eliminating mechanical interleg coupling, we showed that muscle coordination of a unipedal ta...

متن کامل

Effects of Pedal Speed and Crank Length on Pedaling Mechanics during Submaximal Cycling

UNLABELLED During submaximal cycling, the neuromuscular system has the freedom to select different intermuscular coordination strategies. From both a basic science and an applied perspective, it is important to understand how the central nervous system adjusts pedaling mechanics in response to changes in pedaling conditions. PURPOSE To determine the effect of changes in pedal speed (a marker ...

متن کامل

Locomotor strategy for pedaling: muscle groups and biomechanical functions.

A group of coexcited muscles alternating with another group is a common element of motor control, including locomotor pattern generation. This study used computer simulation to investigate human pedaling with each muscle assigned at times to a group. Simulations were generated by applying patterns of muscle excitations to a musculoskeletal model that includes the dynamic properties of the muscl...

متن کامل

Adaptation of muscle coordination to altered task mechanics during steady-state cycling.

The objective of this work was to increase our understanding of how motor patterns are produced during movement tasks by quantifying adaptations in muscle coordination in response to altered task mechanics. We used pedaling as our movement paradigm because it is a constrained cyclical movement that allows for a controlled investigation of test conditions such as movement speed and effort. Alter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomechanics

دوره 30 6  شماره 

صفحات  -

تاریخ انتشار 1997