Plant Traits Demonstrate That Temperate and Tropical Giant Eucalypt Forests Are Ecologically Convergent with Rainforest Not Savanna
نویسندگان
چکیده
Ecological theory differentiates rainforest and open vegetation in many regions as functionally divergent alternative stable states with transitional (ecotonal) vegetation between the two forming transient unstable states. This transitional vegetation is of considerable significance, not only as a test case for theories of vegetation dynamics, but also because this type of vegetation is of major economic importance, and is home to a suite of species of conservation significance, including the world's tallest flowering plants. We therefore created predictions of patterns in plant functional traits that would test the alternative stable states model of these systems. We measured functional traits of 128 trees and shrubs across tropical and temperate rainforest - open vegetation transitions in Australia, with giant eucalypt forests situated between these vegetation types. We analysed a set of functional traits: leaf carbon isotopes, leaf area, leaf mass per area, leaf slenderness, wood density, maximum height and bark thickness, using univariate and multivariate methods. For most traits, giant eucalypt forest was similar to rainforest, while rainforest, particularly tropical rainforest, was significantly different from the open vegetation. In multivariate analyses, tropical and temperate rainforest diverged functionally, and both segregated from open vegetation. Furthermore, the giant eucalypt forests overlapped in function with their respective rainforests. The two types of giant eucalypt forests also exhibited greater overall functional similarity to each other than to any of the open vegetation types. We conclude that tropical and temperate giant eucalypt forests are ecologically and functionally convergent. The lack of clear functional differentiation from rainforest suggests that giant eucalypt forests are unstable states within the basin of attraction of rainforest. Our results have important implications for giant eucalypt forest management.
منابع مشابه
Convergent Evolution towards High Net Carbon Gain Efficiency Contributes to the Shade Tolerance of Palms (Arecaceae)
Most palm species occur in the shaded lower strata of tropical rain forests, but how their traits relate to shade adaptation is poorly understood. We hypothesized that palms are adapted to the shade of their native habitats by convergent evolution towards high net carbon gain efficiency (CGEn), which is given by the maximum photosynthetic rate to dark respiration rate ratio. Leaf mass per area,...
متن کاملCarbon and nitrogen metabolism in mycorrhizal networks and mycoheterotrophic plants of tropical forests: a stable isotope analysis.
Most achlorophyllous mycoheterotrophic (MH) plants obtain carbon (C) from mycorrhizal networks and indirectly exploit nearby autotrophic plants. We compared overlooked tropical rainforest MH plants associating with arbuscular mycorrhizal fungi (AMF) to well-reported temperate MH plants associating with ectomycorrhizal basidiomycetes. We investigated (13)C and (15)N abundances of MH plants, gree...
متن کاملFungus-Growing Termites Originated in African Rain Forest
Fungus-growing termites (subfamily Macrotermitinae, Isoptera) cultivate fungal crops (genus Termitomyces, Basidiomycotina) in gardens inside their colonies. Those fungus gardens are continuously provided with plant substrates, whereas older parts that have been well decomposed by the fungus are consumed (cf.). Fungus-growing termites are found throughout the Old World tropics, in rain forests a...
متن کاملComment on "Why are there so many species of herbivorous insects in tropical rainforests?".
Novotny et al. (Reports, 25 August 2006, p. 1115) argued that higher herbivore diversity in tropical forests results from greater phylogenetic diversity of host plants, not from higher host specificity. However, if host specificity is related to host abundance, differences in relative host abundance between tropical and temperate regions may limit any general conclusion that herbivore diversity...
متن کاملWhy are there so many species of herbivorous insects in tropical rainforests?
Despite recent progress in understanding mechanisms of tree species coexistence in tropical forests, a simple explanation for the even more extensive diversity of insects feeding on these plants has been missing. We compared folivorous insects from temperate and tropical trees to test the hypothesis that herbivore species coexistence in more diverse communities could reflect narrow host specifi...
متن کامل