Matroid Secretary for Regular and Decomposable Matroids

نویسندگان

  • Michael Dinitz
  • Guy Kortsarz
چکیده

In the matroid secretary problem we are given a stream of elements in random order and asked to choose a set of elements that maximizes the total value of the set, subject to being an independent set of a matroid given in advance. The difficulty comes from the assumption that decisions are irrevocable: if we choose to accept an element when it is presented by the stream then we can never get rid of it, and if we choose not to accept it then we cannot later add it. Babaioff, Immorlica, and Kleinberg [SODA 2007] introduced this problem, gave O(1)-competitive algorithms for certain classes of matroids, and conjectured that every matroid admits an O(1)-competitive algorithm. However, most matroids that are known to admit an O(1)-competitive algorithm can be easily represented using graphs (e.g. graphic, cographic, and transversal matroids). In particular, there is very little known about F -representable matroids (the class of matroids that can be represented as elements of a vector space over a field F ), which are one of the foundational types of matroids. Moreover, most of the known techniques are as dependent on graph theory as they are on matroid theory. We go beyond graphs by giving O(1)-competitive algorithms for regular matroids (the class of matroids that are representable over any field), and use techniques that are fundamentally matroid-theoretic rather than graphtheoretic. Our main technique is to leverage the seminal regular matroid decomposition theorem of Seymour, which gives a method for decomposing any regular matroid into matroids which are either graphic, cographic, or isomorphic to a simple 10-element matroid. We show how to combine in a black-box manner any algorithms for these basic classes into an algorithm for a given regular matroid, i.e. how to respect the decomposition. In fact, this allows us to generalize beyond regular matroids to any class of matroids that admits such a decomposition into classes for which we already have good algorithms. In particular, we give an O(1)-competitive algorithm for the class of max-flow min-cut matroids, which Seymour showed can be decomposed into regular matroids and copies of the Fano matroid.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matroid Secretaries

We prove that for every proper minor-closed class M of Fp-representable matroids, there exists a O(1)-competitive algorithm for the matroid secretary problem on M. This result relies on the extremely powerful matroid minor structure theory being developed by Geelen, Gerards and Whittle. We also note that for asymptotically almost all matroids, the matroid secretary algorithm that selects a rand...

متن کامل

On the decomposition of ternary matroids

Matroids were introduced by Whitney in 1935 to try to capture abstractly the essence of dependence. Matroids generalize linear dependence over vector spaces, and they also abstract the properties of graphs, in the former case they are called Vector Matroids, in the latter they are called Graphic Matroids [3]. The operation of Matroid Union was introduced by Nash-Williams in 1966. A matroid is i...

متن کامل

A Framework for the Secretary Problem on the Intersection of Matroids

The secretary problem became one of the most prominent online selection problems due to its numerous applications in online mechanism design. The task is to select a maximumweight subset of elements subject to given constraints, where elements arrive one-by-one in random order, revealing a weight upon arrival. The decision whether to select an element has to be taken immediately after its arriv...

متن کامل

Strong Algorithms for the Ordinal Matroid Secretary Problem

In contrast with the standard and widely studied utility variant, in the ordinal Matroid Secretary Problem (MSP) candidates do not reveal numerical weights but the decision maker can still discern if a candidate is better than another. We consider three competitiveness measures for the ordinal MSP. An algorithm is α ordinal-competitive if for every weight function compatible with the ordinal in...

متن کامل

Structural properties of fuzzy graphs

Matroids are important combinatorial structures and connect close-lywith graphs. Matroids and graphs were all generalized to fuzzysetting respectively. This paper tries to study  connections betweenfuzzy matroids and fuzzy graphs. For a given fuzzy graph, we firstinduce a sequence of matroids  from a sequence of crisp graph, i.e.,cuts of the fuzzy graph. A fuzzy matroid, named graph fuzzy matro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Comput.

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2013