A Finite-Model-Theoretic View on Propositional Proof Complexity

نویسندگان

  • Erich Grädel
  • Martin Grohe
  • Benedikt Pago
  • Wied Pakusa
چکیده

We establish new, and surprisingly tight, connections between propositional proof complexity and finite model theory. Specifically, we show that the power of several propositional proof systems, such as Horn resolution, bounded-width resolution, and the polynomial calculus of bounded degree, can be characterised in a precise sense by variants of fixed-point logics that are of fundamental importance in descriptive complexity theory. Our main results are that Horn resolution has the same expressive power as least fixed-point logic, that bounded-width resolution captures existential least fixed-point logic, and that the polynomial calculus with bounded degree over the rationals solves precisely the problems definable in fixed-point logic with counting. By exploring these connections further, we establish finite-model-theoretic tools for proving lower bounds for the polynomial calculus over the rationals and over finite fields.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Model-Theoretic Expressiveness of Propositional Proof Systems

We establish new, and surprisingly tight, connections between propositional proof complexity and finite model theory. Specifically, we show that the power of several propositional proof systems, such as Horn resolution, bounded width resolution, and the polynomial calculus of bounded degree, can be characterised in a precise sense by variants of fixed-point logics that are of fundamental import...

متن کامل

On Classical Nonassociative Lambek Calculus

CNL, intoduced by de Groote and Lamarche [11], is a conservative extension of Nonassociative Lambek Calculus (NL) by a De Morgan negation ∼, satisfying A∼/B ⇔ A\B∼. [11] provides a fine theory of proof nets for CNL and shows cut elimination and polynomial decidability. Here the purely proof-theoretic approach of [11] is enriched with algebras and phase spaces for CNL. We prove that CNL is a str...

متن کامل

Effectively Polynomial Simulations

We introduce a more general notion of efficient simulation between proof systems, which we call effectively-p simulation. We argue that this notion is more natural from a complexity-theoretic point of view, and by revisiting standard concepts in this light we obtain some surprising new results. First, we give several examples where effectively-p simulations are possible between different propos...

متن کامل

LPC(ID): A Sequent Calculus Proof System for Propositional Logic Extended with Inductive Definitions

The logic FO(ID) uses ideas from the field of logic programming to extend first order logic with non-monotone inductive definitions. Such logic formally extends logic programming, abductive logic programming and datalog, and thus formalizes the view on these formalisms as logics of (generalized) inductive definitions. The goal of this paper is to study a deductive inference method for PC(ID), w...

متن کامل

Parameterized Proof Complexity: a Complexity Gap for Parameterized Tree-like Resolution

We propose a proof-theoretic approach for gaining evidence that certain parameterized problems are not fixed-parameter tractable. We consider proofs that witness that a given propositional formula cannot be satisfied by a truth assignment that sets at most k variables to true, considering k as the parameter. One could separate the parameterized complexity classes FPT and W[2] by showing that th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1802.09377  شماره 

صفحات  -

تاریخ انتشار 2018