Does autophagy mediate age-dependent effect of dietary restriction responses in the filamentous fungus Podospora anserina?

نویسندگان

  • Anne D van Diepeningen
  • Daniël J P Engelmoer
  • Carole H Sellem
  • Daphne H E W Huberts
  • S Marijke Slakhorst
  • Annie Sainsard-Chanet
  • Bas J Zwaan
  • Rolf F Hoekstra
  • Alfons J M Debets
چکیده

Autophagy is a well-conserved catabolic process, involving the degradation of a cell's own components through the lysosomal/vacuolar machinery. Autophagy is typically induced by nutrient starvation and has a role in nutrient recycling, cellular differentiation, degradation and programmed cell death. Another common response in eukaryotes is the extension of lifespan through dietary restriction (DR). We studied a link between DR and autophagy in the filamentous fungus Podospora anserina, a multicellular model organism for ageing studies and mitochondrial deterioration. While both carbon and nitrogen restriction extends lifespan in P. anserina, the size of the effect varied with the amount and type of restricted nutrient. Natural genetic variation for the DR response exists. Whereas a switch to carbon restriction up to halfway through the lifetime resulted in extreme lifespan extension for wild-type P. anserina, all autophagy-deficient strains had a shorter time window in which ageing could be delayed by DR. Under nitrogen limitation, only PaAtg1 and PaAtg8 mediate the effect of lifespan extension; the other autophagy-deficient mutants PaPspA and PaUth1 had a similar response as wild-type. Our results thus show that the ageing process impinges on the DR response and that this at least in part involves the genetic regulation of autophagy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of autophagy as a longevity-assurance mechanism in the aging model Podospora anserina

The filamentous ascomycete Podospora anserina is a well-established aging model in which a variety of different pathways, including those involved in the control of respiration, ROS generation and scavenging, DNA maintenance, proteostasis, mitochondrial dynamics, and programmed cell death have previously been demonstrated to affect aging and life span. Here we address a potential role of autoph...

متن کامل

Stress-dependent opposing roles for mitophagy in aging of the ascomycete Podospora anserina

Mitochondrial dysfunction is causatively linked to organismal aging and the development of degenerative diseases. Here we describe stress-dependent opposing roles of mitophagy, the selective autophagic degradation of mitochondria, in aging and life-span control. We report that the ablation of the mitochondrial superoxide dismutase which is involved in reactive oxygen species (ROS) balancing, do...

متن کامل

Identification of the genes encoding the cytosolic translation release factors from Podospora anserina and analysis of their role during the life cycle.

In an attempt to decipher their role in the life history and senescence process of the filamentous fungus Podospora anserina, we have cloned the su1 and su2 genes, previously identified as implicated in cytosolic translation fidelity. We show that these genes are the equivalents of the SUP35 and SUP45 genes of Saccharomyces cerevisiae, which encode the cytosolic translation termination factors ...

متن کامل

Mitochondrial quality control in aging and lifespan control of the fungal aging model Podospora anserina.

Aging of biological systems is a fundamental process controlled by a complex network of molecular pathways. In the filamentous fungus Podospora anserina, a model in which organismal aging can conveniently be analysed, mitochondria play a central role. A wide range of relevant pathways were identified that contribute to the maintenance of a population of functional mitochondria. These pathways a...

متن کامل

Rapamycin mimics the incompatibility reaction in the fungus Podospora anserina.

In filamentous fungi, a programmed cell death (PCD) reaction occurs when cells of unlike genotype fuse. This reaction is caused by genetic differences at specific loci termed het loci (for heterokaryon incompatibility). Although several het genes have been characterized, the mechanism of this cell death reaction and its relation to PCD in higher eukaryotes remains largely unknown. In Podospora ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Philosophical transactions of the Royal Society of London. Series B, Biological sciences

دوره 369 1646  شماره 

صفحات  -

تاریخ انتشار 2014