Positive Neural Networks in Discrete Time Implement Monotone-Regular Behaviors

نویسندگان

  • Tom J. Ameloot
  • Jan Van den Bussche
چکیده

We study the expressive power of positive neural networks. The model uses positive connection weights and multiple input neurons. Different behaviors can be expressed by varying the connection weights. We show that in discrete time and in the absence of noise, the class of positive neural networks captures the so-called monotone-regular behaviors, which are based on regular languages. A finer picture emerges if one takes into account the delay by which a monotone-regular behavior is implemented. Each monotone-regular behavior can be implemented by a positive neural network with a delay of one time unit. Some monotone-regular behaviors can be implemented with zero delay. And, interestingly, some simple monotone-regular behaviors cannot be implemented with zero delay.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FINITE-TIME PASSIVITY OF DISCRETE-TIME T-S FUZZY NEURAL NETWORKS WITH TIME-VARYING DELAYS

This paper focuses on the problem of finite-time boundedness and finite-time passivity of discrete-time T-S fuzzy neural networks with time-varying delays. A suitable Lyapunov--Krasovskii functional(LKF) is established to derive sufficient condition for finite-time passivity of discrete-time T-S fuzzy neural networks. The dynamical system is transformed into a T-S fuzzy model with uncertain par...

متن کامل

Linear matrix inequality approach for synchronization of chaotic fuzzy cellular neural networks with discrete and unbounded distributed delays based on sampled-data control

In this paper, linear matrix inequality (LMI) approach for synchronization of chaotic fuzzy cellular neural networks (FCNNs) with discrete and unbounded distributed delays based on sampled-data controlis investigated. Lyapunov-Krasovskii functional combining with the input delay approach as well as the free-weighting matrix approach are employed to derive several sufficient criteria in terms of...

متن کامل

Global Stability of a Class of Discrete-Time Recurrent Neural Networks

This paper presents several analytical results on global asymptotic stability (GAS) and global exponential stability (GES) for the equilibrium states of a general class of discrete-time recurrent neural networks (DTRNNS) with asymmetric connection weight matrices and globally Lipschitz continuous and monotone nondecreasing activation functions. A necessary and sufficient condition is formulated...

متن کامل

Robust stability of fuzzy Markov type Cohen-Grossberg neural networks by delay decomposition approach

In this paper, we investigate the delay-dependent robust stability of fuzzy Cohen-Grossberg neural networks with Markovian jumping parameter and mixed time varying delays by delay decomposition method. A new Lyapunov-Krasovskii functional (LKF) is constructed by nonuniformly dividing discrete delay interval into multiple subinterval, and choosing proper functionals with different weighting matr...

متن کامل

AN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS

In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural computation

دوره 27 12  شماره 

صفحات  -

تاریخ انتشار 2015