Experimental Demonstration of a Latch in Clocked Quantum-Dot Cellular Automata
نویسندگان
چکیده
We present an experimental demonstration of a latch in a clocked quantum-dot cellular automata ~QCA! device. The device consists of three floating micron-size metal dots, connected in series by multiple tunnel junctions and controlled by capacitively coupled gates. The middle dot acts as an adjustable barrier to control single-electron tunneling between end dots. The position of a switching electron in the half cell is detected by a single-electron electrometer. We demonstrate ‘‘latching’’ of a single electron in the end dots controlled by the gate connected to the middle dot. This ability to lock an electron in a controllable way enables pipelining, power gain and reduced power dissipation in QCA arrays. © 2001 American Institute of Physics. @DOI: 10.1063/1.1355008#
منابع مشابه
Introducing New Structures for D-Type Latch and Flip-Flop in Quantum-Dot Cellular Automata Technology and its Use in Phase-Frequency Detector, Frequency Divider and Counter Circuits
Quantum-dot cellular automata (QCA) technology is an alternative to overcoming the constraints of CMOS technology. In this paper, a new structure for D-type latch is presented in QCA technology with set and reset terminals. The proposed structure, despite having the set and reset terminals, has only 35 quantum cells, a delay equal to half a cycle of clocks and an occupied area of 39204 nm2. T...
متن کاملOperation of a Quantum-Dot Cellular Automata (QCA) Shift Register and Analysis of Errors
Quantum-dot cellular automata (QCA) is a digital logic architecture that uses single electrons in arrays of quantum dots to perform binary operations. A QCA latch is an elementary building block which can be used to build shift registers and logic devices for clocked QCA architectures. We discuss the operation of a QCA latch and a shift register and present an analysis of the types and properti...
متن کاملFanout gate in quantum-dot cellular automata
We present an experimental demonstration of a fanout gate for quantum-dot cellular automata (QCA), where a signal applied to a single input cell is amplified by that cell and sent to two output cells. Each cell is a single-electron latch composed of three metal dots, which are connected in series by tunnel junctions. Binary information is represented by an excess electron localized to one of th...
متن کاملA two-stage shift register for clocked Quantum-Dot Cellular Automata.
Quantum-Dot Cellular Automata (QCA) is a computational scheme utilizing the position of interacting single electrons within arrays of quantum dots ("cells") to encode and process binary information. Clocked QCA architectures can provide power gain, logic level restoration, and memory features. Using arrays of micron-sized metal dots, we experimentally demonstrate operation of a QCA latch-invert...
متن کاملDesign of low power random number generators for quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are a promising nanotechnology to implement digital circuits at the nanoscale. Devices based on QCA have the advantages of faster speed, lower power consumption, and greatly reduced sizes. In this paper, we are presented the circuits, which generate random numbers in QCA. Random numbers have many uses in science, art, statistics, cryptography, gaming, gambli...
متن کامل