Chylomicron components mediate intestinal lipid-induced inhibition of gastric motor function.

نویسندگان

  • Jörg Glatzle
  • Theodore J Kalogeris
  • Tilman T Zittel
  • Stephania Guerrini
  • Patrick Tso
  • Helen E Raybould
چکیده

Lipid, particularly long-chain triglyceride, initiates feedback regulation of gastrointestinal function. To determine whether the site of action of lipid is pre- or postabsorptive, we investigated the ability of mesenteric lipid-fed lymph to inhibit gastric motor function. Lymph was collected from awake lymph-fistula rats during intestinal infusion with either a glucose-saline maintenance solution or lipid. Intra-arterial injection of lymph collected during intestinal lipid infusion significantly inhibited gastric motility in anesthetized recipient rats compared with injection of equivalent amounts of triglyceride or lymph collected during intestinal infusion of maintenance solution. Lymph collected from rats during lipid infusion with Pluronic L-81 [an inhibitor of chylomicron formation and apolipoprotein (apo) A-IV secretion] compared with lymph injection from donor animals treated with Pluronic L-63 (a noninhibitory control for Pluronic L-81) was significantly less potent. Injection of purified recombinant apo A-IV significantly inhibited gastric motility. Products of lipid digestion and absorption, other than fatty acids or triglyceride, released by the intestine during lipid digestion likely serve as signals to initiate intestinal feedback regulation of gastrointestinal function. Most likely, apo A-IV is one of the signals involved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of gastric emptying in response to intestinal lipid is dependent on chylomicron formation.

Lipid in the intestine initiates feedback inhibition of proximal gastrointestinal function and food intake. In rats and humans, inhibition of gastric emptying is mediated, at least in part, by cholecystokinin (CCK)-A receptors, and in rats there is evidence for involvement of an intestinal vagal afferent pathway. The mechanism by which luminal lipid acts to release CCK or activate vagal afferen...

متن کامل

Intestinal DGAT1 deficiency reduces postprandial triglyceride and retinyl ester excursions by inhibiting chylomicron secretion and delaying gastric emptying

Acyl CoA:diacylglycerol acyltransferase (DGAT) 1 catalyzes the final step of triglyceride (TG) synthesis. We show that acute administration of a DGAT1 inhibitor (DGAT1i) by oral gavage or genetic deletion of intestinal Dgat1 (intestine-Dgat1(-/-)) markedly reduced postprandial plasma TG and retinyl ester excursions by inhibiting chylomicron secretion in mice. Loss of DGAT1 activity did not affe...

متن کامل

Lipid absorption and intestinal lipoprotein formation.

Lipid absorption is a complex process which involves coordinated gastric, intestinal, biliary and pancreatic function. Emulsification of dietary lipid occurs in the stomach and upper intestine where a series of enzymic events also occur. Phospholipids are digested by phospholipases. Colipase anchors lipase to the emulsion surface overcoming the interfering effect of bile salts. The products of ...

متن کامل

Intestinal scavenger receptor class B type I as a novel regulator of chylomicron production in healthy and diet-induced obese states.

The small intestine contributes to diabetic dyslipidemia through the overproduction of apolipoprotein B48 (apoB48)-containing chylomicron particles. An important regulator of chylomicron generation is dietary lipid absorption, underlining the potential involvement of intestinal lipid transporters for developing dyslipidemia. Intestinal expression of scavenger receptor class B type I (SR-BI) has...

متن کامل

ApoA-IV: current and emerging roles in intestinal lipid metabolism, glucose homeostasis, and satiety.

Apolipoprotein A-IV (apoA-IV) is secreted by the small intestine on chylomicrons into intestinal lymph in response to fat absorption. Many physiological functions have been ascribed to apoA-IV, including a role in chylomicron assembly and lipid metabolism, a mediator of reverse-cholesterol transport, an acute satiety factor, a regulator of gastric function, and, finally, a modulator of blood gl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Gastrointestinal and liver physiology

دوره 282 1  شماره 

صفحات  -

تاریخ انتشار 2002