Ex vivo 2D and 3D HSV-2 infection model using human normal vaginal epithelial cells
نویسندگان
چکیده
Herpes simplex virus type 2 (HSV-2) infects human genital mucosa and establishes life-long latent infection. It is unmet need to establish a human cell-based microphysiological system for virus biology and anti-viral drug discovery. One of barriers is lacking of culture system of normal epithelial cells in vitro over decades. In this study, we established human normal vaginal epithelial cell (HNVEC) culture using co-culture system. HNVEC cells were then propagated rapidly and stably in a defined culture condition. HNVEC cells exhibited a normal diploid karyotype and formed the well-defined and polarized spheres in matrigel three-dimension (3D) culture, while malignant cells (HeLa) formed disorganized and nonpolar solid spheres. HNVEC cells had a normal cellular response to DNA damage and had no transforming property using soft agar assays. HNVEC expressed epithelial marker cytokeratin 14 (CK14) and p63, but not cytokeratin 18 (CK18). Next, we reconstructed HNVEC-derived 3D vaginal epithelium using air-liquid interface (ALI) culture. This 3D vaginal epithelium has the basal and apical layers with expression of epithelial markers as its originated human vaginal tissue. Finally, we established an HSV-2 infection model based on the reconstructed 3D vaginal epithelium. After inoculation of HSV-2 (G strain) at apical layer of the reconstructed 3D vaginal epithelium, we observed obvious pathological effects gradually spreading from the apical layer to basal layer with expression of a viral protein. Thus, we established an ex vivo 2D and 3D HSV-2 infection model that can be used for HSV-2 virology and anti-viral drug discovery.
منابع مشابه
HSV-2-Driven Increase in the Expression of α4β7 Correlates with Increased Susceptibility to Vaginal SHIVSF162P3 Infection
The availability of highly susceptible HIV target cells that can rapidly reach the mucosal lymphoid tissues may increase the chances of an otherwise rare transmission event to occur. Expression of α4β7 is required for trafficking of immune cells to gut inductive sites where HIV can expand and it is expressed at high level on cells particularly susceptible to HIV infection. We hypothesized that ...
متن کاملComparison of the Ex Vivo Expansion of UCB-Derived CD34+ in 3D DBM/MBA Scaffolds with USSC as a Feeder Layer
Objective(s): Ex vivo expansion of hematopoitic stem cells is an alternative way to increase umbilical cord blood (UCB)-CD34+ cells for bone marrow transplantation. For this purpose demineralized bone matrix (DBM) and mineralized bone allograft (MBA) as two scaffolds based on bone matrix and stem cell niche, were simultaneously used to enhance the effect of human mesenchymal pro...
متن کاملMucosal immunity to herpes simplex virus type 2 infection in the mouse vagina is impaired by in vivo depletion of T lymphocytes.
Intravaginal (IVAG) inoculation of wild-type herpes simplex virus type 2 (HSV-2) in mice causes epithelial infection followed by lethal neurological illness, while IVAG inoculation of attenuated HSV-2 causes epithelial infection followed by development of protective immunity against subsequent IVAG challenge with wild-type virus. The role of T cells in this immunity was studied by in vivo deple...
متن کاملHerpes Simplex Virus-Induced Epithelial Damage and Susceptibility to Human Immunodeficiency Virus Type 1 Infection in Human Cervical Organ Culture
Normal human premenopausal cervical tissue has been used to derive primary cell populations and to establish ex vivo organ culture systems to study infections with herpes simplex virus (HSV-1 or HSV-2) and human immunodeficiency virus type 1 (HIV-1). Infection with either HSV-1 or HSV-2 rapidly induced multinuclear giant cell formation and widespread damage in mucosal epithelial cells. Subseque...
متن کاملUp-Regulation of Integrinsn α2β1 and α3β1 Expression in Human Foreskin Fibroblast Cells after In-Vitro Infection with Herpes Simplex Virus Type 1
The interaction of Herpes Simplex Virus type 1 (HSV-1) with human fetal foreskin fibroblast (HFFF) cell was studied using a recent isolate of HSV-1 which was propagated in Hep-2 cells. HFFF cells were challenged with HSV-1 with a multiplicity of infection (MOI) of 1 virus/cell for 24 hours. Flow cytometric analysis demonstrated that HSV-1 challenged HFFF cells expressed increased levels of α2β1...
متن کامل