The Sharp Hausdorff Measure Condition for Length of Projections

نویسندگان

  • YUVAL PERES
  • Boris Solomyak
  • BORIS SOLOMYAK
چکیده

In a recent paper, Pertti Mattila asked which gauge functions φ have the property that for any Borel set A ⊂ R2 with Hausdorff measure Hφ(A) > 0, the projection of A to almost every line has positive length. We show that finiteness of ∫ 1 0 φ(r) r2 dr, which is known to be sufficient for this property, is also necessary for regularly varying φ. Our proof is based on a random construction adapted to the gauge function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Visibility for Self-similar Sets of Dimension One in the Plane

We prove that a purely unrectifiable self-similar set of finite 1dimensional Hausdorff measure in the plane, satisfying the Open Set Condition, has radial projection of zero length from every point.

متن کامل

Sharp Geometric and Functional Inequalities in Metric Measure Spaces with Lower Ricci Curvature Bounds

Abstract. For metric measure spaces verifying the reduced curvature-dimension condition CD∗(K,N) we prove a series of sharp functional inequalities under the additional assumption of essentially nonbranching. Examples of spaces entering this framework are (weighted) Riemannian manifolds satisfying lower Ricci curvature bounds and their measured Gromov Hausdorff limits, Alexandrov spaces satisfy...

متن کامل

Weak Curvature Conditions and Functional Inequalities

Abstract. We give sufficient conditions for a measured length space (X, d, ν) to admit local and global Poincaré inequalities, along with a Sobolev inequality. We first introduce a condition DM on (X, d, ν), defined in terms of transport of measures. We show that DM, together with a doubling condition on ν, implies a scale-invariant local Poincaré inequality. We show that if (X, d, ν) has nonne...

متن کامل

Weak Curvature Conditions and Poincaré Inequalities

Abstract. We give sufficient conditions for a measured length space (X, d, ν) to admit local and global Poincaré inequalities. We first introduce a condition DM on (X, d, ν), defined in terms of transport of measures. We show that DM , together with a doubling condition on ν, implies a scale-invariant local Poincaré inequality. We show that if (X, d, ν) has nonnegative N -Ricci curvature and ha...

متن کامل

The concentration function problem for $G$-spaces

‎In this note‎, ‎we consider the concentration function problem for a continuous action of a locally compact group $G$ on a locally compact Hausdorff space $X$‎. ‎We prove a necessary and sufficient condition for the concentration functions of a‎ ‎spread-out irreducible probability measure $mu$ on $G$ to converge to zero.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004