Synergy of crude enzyme cocktail from cold-adapted Cladosporium cladosporioides Ch2-2 with commercial xylanase achieving high sugars yield at low cost
نویسندگان
چکیده
BACKGROUND The efficiency and cost of current lignocellulosic enzymes still limit the large-scale production of cellulosic ethanol in industry. Residual lignin after pretreatment severely depresses the activity of polysaccharide hydrolases and the h ydrolysis of holocellulose. If we include in hydrolase mixture construction the ligninase involved in lignin degradation, which mainly includes laccase, manganese peroxidases (MnP) and lignin peroxidase (LiP), it is feasible that this could greatly improve the fermentable sugars yield. RESULTS The psychrophilic lignocellulosic enzymes system of Cladosporium cladosporioides Ch2-2 including ligninase and polysaccharide hydrolases was suitable for selective delignification and efficient saccharification of biomass with wide thermal adaptability. The purified laccase was optimally active at 15°C and pH 3.5, exhibiting high thermostability over a broad range of temperatures (between 4 and 40°C). In addition, manganese-independent peroxidase (MIP), a special type of ligninase with the capacity to oxidize dimethyl phthalate (DMP) in the absence of H2O2 and Mn(2+), was optimally active at 20°C and pH 2.5, exhibiting high thermostability over a broad range of temperatures (4 and 28°C), while depressed completely by Fe(2+) and essentially unaffected by EDTA. Synergy between Ch2-2 crude enzymes and commercial xylanase obviously enhanced biomass hydrolysis, which could take the place of expensive commercial cellulase mixture. The maximum value of synergistic degree reached 4.7 at 28°C, resulting in 10.1 mg/mL reducing sugars. CONCLUSIONS The psychrophilic enzymes system of C. cladosporioides Ch2-2 with a different synergistic mechanism has huge potential for the enhancement of biomass hydrolysis at mesophilic and low temperatures. The application scope of the lignocellulosic enzyme cocktail could be greatly enlarged by optimizing the operation conditions specific to the characteristics of ligninase.
منابع مشابه
Highly Thermostable Xylanase Production from A Thermophilic Geobacillus sp. Strain WSUCF1 Utilizing Lignocellulosic Biomass
Efficient enzymatic hydrolysis of lignocellulose to fermentable sugars requires a complete repertoire of biomass deconstruction enzymes. Hemicellulases play an important role in hydrolyzing hemicellulose component of lignocellulose to xylooligosaccharides and xylose. Thermostable xylanases have been a focus of attention as industrially important enzymes due to their long shelf life at high temp...
متن کاملImproved yield of α-L-arabinofuranosidase by newly isolated Aspergillus niger ADH-11 and synergistic effect of crude enzyme on saccharification of maize stover
Background: In the view of depleting resources and ever-increasing price of crude oil, there is an urge for the development of alternative sources to solve the issue of fuel in the coming years. Lignocellulosic biomass is considered to be the most potential alternative resources for fossil fuel. Bioconversion of cellulosic and hemicellulosic components into fermentable sugars is the key step in...
متن کاملCharacterization of Xylanase of Cladosporium cladosporioides H1 Isolated from Janggyeong Panjeon in Haeinsa Temple
Cladosporium cladosporioides H1 was found to be the most abundant microbe in Janggyeong Panjeon. C. cladosporioides H1 produced a 20 kDa xylanase, which was generally stable below 60℃ and had specialized activity in an acidic condition. Our results may lead to the development of a strategy for preservation of organic cultural heritage environments.
متن کاملMonosaccharides and Ethanol Production from Superfine Ground Sugarcane Bagasse Using Enzyme Cocktail
In this work, the effect of particle size on the enzymatic hydrolysis of milled and sieved sugarcane bagasse (SCB) was studied. The enzymatic hydrolysis and fermentability of superfine ground SCB (SGP400) using an enzyme cocktail strategy were also explored. Particle size reduction improved the enzymatic hydrolysis. The highest glucose yield was 44.75%, which was obtained from SGP400. The enzym...
متن کاملStrategies for enzyme saving during saccharification of pretreated lignocellulo-starch biomass: effect of enzyme dosage and detoxification chemicals
Two strategies leading to enzyme saving during saccharification of pretreated lignocellulo-starch biomass (LCSB) was investigated which included reducing enzyme dosage by varying their levels in enzyme cocktails and enhancing the fermentable sugar yield in enzyme-reduced systems using detoxification chemicals. Time course release of reducing sugars (RS) during 24-120 h was significantly higher ...
متن کامل