Systems of Nonlinear Wave Equations with Damping and Supercritical Sources

نویسندگان

  • Yanqiu Guo
  • Mohammad A. Rammaha
چکیده

We consider the local and global well-posedness of the coupled nonlinear wave equations u tt − ∆u + g 1 (u t) = f 1 (u, v) v tt − ∆v + g 2 (v t) = f 2 (u, v), in a bounded domain Ω ⊂ R n with a nonlinear Robin boundary condition on u and a zero boundary conditions on v. The nonlinearities f 1 (u, v) and f 2 (u, v) are with supercritical exponents representing strong sources, while g 1 (u t) and g 2 (v t) act as damping. It is well-known that the presence of a nonlinear boundary source causes significant difficulties since the linear Neumann problem for the single wave equation is not, in general, well-posed in the finite-energy space H 1 (Ω) × L 2 (∂Ω) with boundary data from L 2 (∂Ω) (due to the failure of the uniform Lopatinskii condition). Additional challenges stem from the fact that the sources considered in this dissertation are non-dissipative and are not locally Lipschitz from H 1 (Ω) into L 2 (Ω) or L 2 (∂Ω). By employing nonlinear semigroups and the theory of monotone operators, we obtain several results on the existence of local and global weak solutions, and uniqueness of weak solutions. Moreover, we prove that such unique solutions depend continuously on the initial data. Under some restrictions on the parameters, we also prove that every weak solution to our system blows up in finite time, provided the initial energy is negative and the sources are more dominant than the damping in the system. Additional results are obtained via careful analysis involving the Nehari Manifold. Specifically, we prove the existence of a unique global weak solution with initial data coming from the " good " part of the potential well. For such a global solution, we prove that the total energy of the system decays exponentially or algebraically, depending on the behavior of the dissipation in the system near the origin. Moreover, we prove a blow up result for weak solutions with nonnegative initial energy. Finally, we establish important generalization of classical results by H. Brézis in 1972 on convex integrals on Sobolev spaces. These results allowed us to overcome a major technical difficulty that faced us in the proof of the local existence of weak solutions. ACKNOWLEDGEMENTS First and foremost I would like to express my sincerest gratitude to my …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blow-up of Solutions to Systems of Nonlinear Wave Equations with Supercritical Sources

In this article we focus on the life span of solutions to the following system of nonlinear wave equations: utt −∆u + g1(ut) = f1(u, v) vtt −∆v + g2(vt) = f2(u, v) in a bounded domain Ω ⊂ R with Robin and Dirichlét boundary conditions on u and v, respectively. The nonlinearities f1(u, v) and f2(u, v) represent strong sources of supercritical order, while g1(ut) and g2(vt) represent interior dam...

متن کامل

Systems of Nonlinear Wave Equations with Damping and Supercritical Boundary and Interior Sources

utt −Δu+ g1(ut) = f1(u, v), vtt −Δv + g2(vt) = f2(u, v) in a bounded domain Ω ⊂ Rn with Robin and Dirichlét boundary conditions on u and v respectively. The nonlinearities f1(u, v) and f2(u, v) have supercritical exponents representing strong sources, while g1(ut) and g2(vt) act as damping. In addition, the boundary condition also contains a nonlinear source and a damping term. By employing non...

متن کامل

Global Existence and Decay of Energy to Systems of Wave Equations with Damping and Supercritical Sources

This paper is concerned with a system of nonlinear wave equations with supercritical interior and boundary sources, and subject to interior and boundary damping terms. It is well-known that the presence of a nonlinear boundary source causes significant difficulties since the linear Neumann problem for the single wave equation is not, in general, well-posed in the finite-energy space H(Ω) × L(∂Ω...

متن کامل

Weak solutions and blow-up for wave equations of p-Laplacian type with supercritical sources

Weak solutions and blow-up for wave equations of p-Laplacian type with supercritical sources" (2015). This paper investigates a quasilinear wave equation with Kelvin-Voigt damping, u t t − ∆ p u − ∆u t = f (u), in a bounded domain Ω ⊂ R 3 and subject to Dirichlét boundary conditions. The operator ∆ p , 2 < p < 3, denotes the classical p-Laplacian. The nonlinear term f (u) is a source feedback t...

متن کامل

Existence of Weak Solutions to the Cauchy Problem of a Semilinear Wave Equation with Supercritical Interior Source and Damping

In this paper we show existence of finite energy solutions for the Cauchy problem associated with a semilinear wave equation with interior damping and supercritical source terms. The main contribution consists in dealing with super-supercritical source terms (terms of the order of |u|p with p ≥ 5 in n = 3 dimensions), an open and highly recognized problem in the literature on nonlinear wave equ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016