Finite Permutation Groups and Finite Simple Groups
نویسنده
چکیده
In the past two decades, there have been far-reaching developments in the problem of determining all finite non-abelian simple groups—so much so, that many people now believe that the solution to the problem is imminent. And now, as I correct these proofs in October 1980, the solution has just been announced. Of course, the solution will have a considerable effect on many related areas, both within group theory and outside. The purpose of this article is to consider the theory of finite permutation groups with the assumption that the finite simple groups are known, and to examine questions such as: which problems are solved or solvable under this assumption, and what important problems remain?
منابع مشابه
Classification of finite simple groups whose Sylow 3-subgroups are of order 9
In this paper, without using the classification of finite simple groups, we determine the structure of finite simple groups whose Sylow 3-subgroups are of the order 9. More precisely, we classify finite simple groups whose Sylow 3-subgroups are elementary abelian of order 9.
متن کاملPermutation groups of Finite Morley rank
Introduction Groups of finite Morley rank made their first appearance in model theory as binding groups, which are the key ingredient in Zilber's ladder theorem and in Poizat's explanation of the Picard-Vessiot theory. These are not just groups, but in fact permutation groups acting on important definable sets. When they are finite, they are connected with the model theoretic notion of algebrai...
متن کاملOn the Mark and Markaracter Tables of Finite Groups
Let G be a finite group and C(G) be the family of representative conjugacy classes of subgroups of G. The matrix whose H,K-entry is the number of fixed points of the set G/K under the action of H is called the table of marks of G where H,K run through all elements in C(G). Shinsaku Fujita for the first time introduced the term “markaracter” to discuss marks for permutation representati...
متن کاملQUASI-PERMUTATION REPRESENTATIONS OF METACYCLIC 2-GROUPS
By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus, every permutation matrix over C is a quasipermutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a fa...
متن کاملGeneration and Random Generation: from Simple Groups to Maximal Subgroups
Let G be a finite group and let d(G) be the minimal number of generators for G. It is well known that d(G) = 2 for all (non-abelian) finite simple groups. We prove that d(H) ≤ 4 for any maximal subgroup H of a finite simple group, and that this bound is best possible. We also investigate the random generation of maximal subgroups of simple and almost simple groups. By applying a recent theorem ...
متن کامل