Genomic Screening for Artificial Selection during Domestication and Improvement in Maize
نویسندگان
چکیده
BACKGROUND Artificial selection results in phenotypic evolution. Maize (Zea mays L. ssp. mays) was domesticated from its wild progenitor teosinte (Zea mays subspecies parviglumis) through a single domestication event in southern Mexico between 6000 and 9000 years ago. This domestication event resulted in the original maize landrace varieties. The landraces provided the genetic material for modern plant breeders to select improved varieties and inbred lines by enhancing traits controlling agricultural productivity and performance. Artificial selection during domestication and crop improvement involved selection of specific alleles at genes controlling key morphological and agronomic traits, resulting in reduced genetic diversity relative to unselected genes. SCOPE This review is a summary of research on the identification and characterization by population genetics approaches of genes affected by artificial selection in maize. CONCLUSIONS Analysis of DNA sequence diversity at a large number of genes in a sample of teosintes and maize inbred lines indicated that approx. 2 % of maize genes exhibit evidence of artificial selection. The remaining genes give evidence of a population bottleneck associated with domestication and crop improvement. In a second study to efficiently identify selected genes, the genes with zero sequence diversity in maize inbreds were chosen as potential targets of selection and sequenced in diverse maize landraces and teosintes, resulting in about half of candidate genes exhibiting evidence for artificial selection. Extended gene sequencing demonstrated a low false-positive rate in the approach. The selected genes have functions consistent with agronomic selection for plant growth, nutritional quality and maturity. Large-scale screening for artificial selection allows identification of genes of potential agronomic importance even when gene function and the phenotype of interest are unknown. These approaches should also be applicable to other domesticated species if specific demographic conditions during domestication exist.
منابع مشابه
Genetic Architecture of Domestication-Related Traits in Maize.
Strong directional selection occurred during the domestication of maize from its wild ancestor teosinte, reducing its genetic diversity, particularly at genes controlling domestication-related traits. Nevertheless, variability for some domestication-related traits is maintained in maize. The genetic basis of this could be sequence variation at the same key genes controlling maize-teosinte diffe...
متن کاملMolecular population genetics of maize regulatory genes during maize evolution By
Maize was domesticated from its wild ancestor, teosinte, in southern Mexico between ~6,250 and ~10,000 years ago. The domestication of maize resulted in an extensive phenotypic change in female inflorescence (ear) structures from teosinte. MADS-box genes encode transcription factors which are key regulators of plant inflorescence and flower development. We examined DNA sequence variation in 32 ...
متن کاملMADS-box genes of maize: frequent targets of selection during domestication.
MADS-box genes encode transcription factors that are key regulators of plant inflorescence and flower development. We examined DNA sequence variation in 32 maize MADS-box genes and 32 randomly chosen maize loci and investigated their involvement in maize domestication and improvement. Using neutrality tests and a test based on coalescent simulation of a bottleneck model, we identified eight MAD...
متن کاملPatterns of selection and tissue-specific expression among maize domestication and crop improvement loci.
The domestication of maize (Zea mays sp. mays) from its wild progenitors represents an opportunity to investigate the timing and genetic basis of morphological divergence resulting from artificial selection on target genes. We compared sequence diversity of 30 candidate selected and 15 reference loci between the three populations of wild teosintes, maize landraces, and maize inbred lines. We in...
متن کاملIdentifying genes of agronomic importance in maize by screening microsatellites for evidence of selection during domestication.
Crop species experienced strong selective pressure directed at genes controlling traits of agronomic importance during their domestication and subsequent episodes of selective breeding. Consequently, these genes are expected to exhibit the signature of selection. We screened 501 maize genes for the signature of selection using microsatellites or simple sequence repeats (SSRs). We applied the Ew...
متن کامل