Calculus of variations with fractional derivatives and fractional integrals

نویسندگان

  • Ricardo Almeida
  • Delfim F. M. Torres
چکیده

We prove Euler-Lagrange fractional equations and sufficient optimality conditions for problems of the calculus of variations with functionals containing both fractional derivatives and fractional integrals in the sense of Riemann-Liouville.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some new results using Hadamard fractional integral

Fractional calculus is the field of mathematical analysis which deals with the investigation and applications of integrals and derivatives of arbitrary order. The purpose of this work is to use Hadamard fractional integral to establish some new integral inequalities of Gruss type by using one or two parameters which ensues four main results . Furthermore, other integral inequalities of reverse ...

متن کامل

A fractional calculus of variations for multiple integrals with application to vibrating string

We introduce a fractional theory of the calculus of variations for multiple integrals. Our approach uses the recent notions of Riemann–Liouville fractional derivatives and integrals in the sense of Jumarie. The main results provide fractional versions of the theorems of Green and Gauss, fractional Euler–Lagrange equations, and fractional natural boundary conditions. As an application we discuss...

متن کامل

Existence of Minimizers for Fractional Variational Problems Containing Caputo Derivatives

We study dynamic minimization problems of the calculus of variations with Lagrangian functionals containing Riemann–Liouville fractional integrals, classical and Caputo fractional derivatives. Under assumptions of regularity, coercivity and convexity, we prove existence of solutions. AMS Subject Classifications: 26A33, 49J05.

متن کامل

Fractional variational calculus for nondifferentiable functions: generalized natural boundary conditions

Fractional (non-integer) derivatives and integrals play an important role in theory and applications. The fractional calculus of variations is a rather recent subject with the first results from 1996. This paper presents necessary and sufficient optimality conditions for fractional problems of the calculus of variations with a Lagrangian density depending on the free end-points. The fractional ...

متن کامل

Necessary Optimality Conditions for Fractional Action-Like Integrals of Variational Calculus with Riemann-Liouville Derivatives of Order (α, β)∗

We derive Euler-Lagrange type equations for fractional action-like integrals of the calculus of variations which depend on the Riemann-Liouville derivatives of order (α, β), α > 0, β > 0, recently introduced by J. Cresson and S. Darses. Some interesting consequences are obtained and discussed. Mathematics Subject Classification 2000: 49K05, 49S05, 70H33, 26A33.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Appl. Math. Lett.

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2009