Polynomial Time Uniform Word Problems
نویسنده
چکیده
We have two polynomial time results for the uniform word problem for a quasivariety Q: (a) The uniform word problem for Q can be solved in polynomial time iff one can find a certain congruence on finite partial algebras in polynomial time. (b) Let Q* be the relational class determined by Q. If any universal Horn class between the universal closure S(Q*) and the weak embedding closure S(Q*) of Q* is finitely axiomatizable then the uniform word problem for Q is solvable in polynomial time. This covers Skolem’s 1920 solution to the uniform word problem for lattices and Evans’ 1953 applications of the weak embeddability property for finite partial V algebras. Mathematics Subject Classification: 03D40, 06B25, 08A50, 08C15, 68Q25.
منابع مشابه
On the Circuit Complexity of Random Generation Problems for Regular and Context-Free Languages
We study the circuit complexity of generating at random a word of length n from a given language under uniform distribution. We prove that, for every language accepted in polynomial time by 1-NAuxPDA of polynomially bounded ambiguity, the problem is solvable by a logspace-uniform family of probabilistic boolean circuits of polynomial size and O(log2 n) depth. Using a suitable notion of reducibi...
متن کاملThe Word and Geodesic Problems in Free Solvable Groups
We study the computational complexity of the Word Problem (WP) in free solvable groups Sr,d, where r ≥ 2 is the rank and d ≥ 2 is the solvability class of the group. It is known that the Magnus embedding of Sr,d into matrices provides a polynomial time decision algorithm for WP in a fixed group Sr,d. Unfortunately, the degree of the polynomial grows together with d, so the uniform algorithm is ...
متن کاملST - T C SC - 2 00 2 - 02 Huffman Coding with Unequal Letter Costs [ Extended
In the standard Huffman coding problem, one is given a set of words and for each word a positive frequency. The goal is to encode each word w as a codeword c(w) over a given alphabet. The encoding must be prefix free (no codeword is a prefix of any other) and should minimize the weighted average codeword size ∑ w freq(w) |c(w)|. The problem has a well-known polynomial-time algorithm due to Huff...
متن کاملA Logspace Solution to the Word and Conjugacy problem of Generalized Baumslag-Solitar Groups
Baumslag-Solitar groups were introduced in 1962 by Baumslag and Solitar as examples for finitely presented non-Hopfian two-generator groups. Since then, they served as examples for a wide range of purposes. As Baumslag-Solitar groups are HNN extensions, there is a natural generalization in terms of graph of groups. Concerning algorithmic aspects of generalized Baumslag-Solitar groups, several d...
متن کاملSpatial Codes and the Hardness of String Folding Problems (Extended Abstract)
(Extended Abstract) Ashwin Nayak Alistair Sinclair y Uri Zwick z Abstract We present the rst proof of NP-hardness (under randomized polynomial time reductions) for string folding problems over a nite alphabet. All previous such intractability results have required an unbounded alphabet size. These problems correspond to the protein folding problem in variants of the hydrophobic-hydrophilic (or ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Log. Q.
دوره 41 شماره
صفحات -
تاریخ انتشار 1995