Polynomial Time Uniform Word Problems

نویسنده

  • Stanley Burris
چکیده

We have two polynomial time results for the uniform word problem for a quasivariety Q: (a) The uniform word problem for Q can be solved in polynomial time iff one can find a certain congruence on finite partial algebras in polynomial time. (b) Let Q* be the relational class determined by Q. If any universal Horn class between the universal closure S(Q*) and the weak embedding closure S(Q*) of Q* is finitely axiomatizable then the uniform word problem for Q is solvable in polynomial time. This covers Skolem’s 1920 solution to the uniform word problem for lattices and Evans’ 1953 applications of the weak embeddability property for finite partial V algebras. Mathematics Subject Classification: 03D40, 06B25, 08A50, 08C15, 68Q25.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Circuit Complexity of Random Generation Problems for Regular and Context-Free Languages

We study the circuit complexity of generating at random a word of length n from a given language under uniform distribution. We prove that, for every language accepted in polynomial time by 1-NAuxPDA of polynomially bounded ambiguity, the problem is solvable by a logspace-uniform family of probabilistic boolean circuits of polynomial size and O(log2 n) depth. Using a suitable notion of reducibi...

متن کامل

The Word and Geodesic Problems in Free Solvable Groups

We study the computational complexity of the Word Problem (WP) in free solvable groups Sr,d, where r ≥ 2 is the rank and d ≥ 2 is the solvability class of the group. It is known that the Magnus embedding of Sr,d into matrices provides a polynomial time decision algorithm for WP in a fixed group Sr,d. Unfortunately, the degree of the polynomial grows together with d, so the uniform algorithm is ...

متن کامل

ST - T C SC - 2 00 2 - 02 Huffman Coding with Unequal Letter Costs [ Extended

In the standard Huffman coding problem, one is given a set of words and for each word a positive frequency. The goal is to encode each word w as a codeword c(w) over a given alphabet. The encoding must be prefix free (no codeword is a prefix of any other) and should minimize the weighted average codeword size ∑ w freq(w) |c(w)|. The problem has a well-known polynomial-time algorithm due to Huff...

متن کامل

A Logspace Solution to the Word and Conjugacy problem of Generalized Baumslag-Solitar Groups

Baumslag-Solitar groups were introduced in 1962 by Baumslag and Solitar as examples for finitely presented non-Hopfian two-generator groups. Since then, they served as examples for a wide range of purposes. As Baumslag-Solitar groups are HNN extensions, there is a natural generalization in terms of graph of groups. Concerning algorithmic aspects of generalized Baumslag-Solitar groups, several d...

متن کامل

Spatial Codes and the Hardness of String Folding Problems (Extended Abstract)

(Extended Abstract) Ashwin Nayak Alistair Sinclair y Uri Zwick z Abstract We present the rst proof of NP-hardness (under randomized polynomial time reductions) for string folding problems over a nite alphabet. All previous such intractability results have required an unbounded alphabet size. These problems correspond to the protein folding problem in variants of the hydrophobic-hydrophilic (or ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Log. Q.

دوره 41  شماره 

صفحات  -

تاریخ انتشار 1995