Estimation of Asian dust aerosol effect on cloud radiation forcing using Fu-Liou radiative model and CERES measurements
نویسندگان
چکیده
The impact of Asian dust on cloud radiative forcing during 2003–2006 is studied by using the Clouds and Earth’s Radiant Energy Budget Scanner (CERES) data and the Fu-Liou radiative transfer model. Analysis of satellite data shows that the dust aerosol significantly reduced the cloud cooling effect at TOA. In dust contaminated cloudy regions, the 4-year mean values of the instantaneous shortwave, longwave and net cloud radiative forcing are −138.9, 69.1, and −69.7 Wm−2, which are 57.0, 74.2, and 46.3%, respectively, of the corresponding values in pristine cloudy regions. The satellite-retrieved cloud properties are significantly different in the dusty regions and can influence the radiative forcing indirectly. The contributions to the cloud radiation forcing by the dust direct, indirect and semi-direct effects are estimated using combined satellite observations and Fu-Liou model simulation. The 4-year mean value of combination of dust indirect and semi-direct shortwave radiative forcing (SWRF) is 82.2 Wm−2, which is 78.4% of the total dust effect. The dust direct effect is only 22.7 Wm−2, which is 21.6% of the total effect. Because both first and second indirect effects enhance cloud cooling, the aerosol-induced cloud warming is mainly the result of the semi-direct effect of dust.
منابع مشابه
Longwave radiative forcing of Saharan dust aerosols estimated from MODIS, MISR, and CERES observations on Terra
[1] Using observations from the Multi-angle Imaging Spectroradiometer (MISR), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Clouds and the Earth’s Radiant Energy System (CERES) instruments onboard the Terra satellite; we present a new technique for studying longwave (LW) radiative forcing of dust aerosols over the Saharan desert for cloud-free conditions. The monthly-mean L...
متن کاملCloud-free shortwave aerosol radiative effect over oceans: Strategies for identifying anthropogenic forcing from Terra satellite measurements
[1] Using the Single Scanner Footprint (SSF) data that combines the multi-spectral Moderate Resolution Imaging Spectroradiometer (MODIS) cloud and aerosol products with the Clouds and the Earth’s Radiant Energy System (CERES) top of atmosphere broadband radiative fluxes, we first provide observational estimates of the instantaneous cloud-free shortwave aerosol radiative forcing (SWARF) over the...
متن کاملDust aerosol optical properties retrieval and radiative forcing over northwestern China during the 2008 China‐U.S. joint field experiment
[1] The Atmosphere Radiation Measurements Program’s Ancillary Facility (AAF/ SMART‐COMMIT) was deployed to Zhangye (39.082°N, 100.276°E), which is located in a semidesert area of northwest China, during the period of late April to mid June in 2008. We selected 11 cases to retrieve dust aerosol optical depth (AOD), Angstrom exponent, size distribution, single‐scattering albedo (SSA) and asymmetr...
متن کاملSurface aerosol radiative forcing derived from collocated ground-based radiometric observations during PRIDE, SAFARI, and ACE-Asia.
An approach is presented to estimate the surface aerosol radiative forcing by use of collocated cloud-screened narrowband spectral and thermal-offset-corrected radiometric observations during the Puerto Rico Dust Experiment 2000, South African Fire Atmosphere Research Initiative (SAFARI) 2000, and Aerosol Characterization Experiment-Asia 2001. We show that aerosol optical depths from the Multip...
متن کاملSolar radiation budget and radiative forcing due to aerosols and clouds
[1] This study integrates global data sets for aerosols, cloud physical properties, and shortwave radiation fluxes with a Monte Carlo Aerosol-Cloud-Radiation (MACR) model to estimate both the surface and the top-of-atmosphere (TOA) solar radiation budget as well as atmospheric column solar absorption. The study also quantifies the radiative forcing of aerosols and that of clouds. The observatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007