Finite Element Approximation of the Linearized Cahn-hilliard-cook Equation

نویسندگان

  • STIG LARSSON
  • ALI MESFORUSH
  • A. MESFORUSH
چکیده

The linearized Cahn-Hilliard-Cook equation is discretized in the spatial variables by a standard finite element method. Strong convergence estimates are proved under suitable assumptions on the covariance operator of the Wiener process, which is driving the equation. The backward Euler time stepping is also studied. The analysis is set in a framework based on analytic semigroups. The main part of the work consists of detailed error bounds for the corresponding deterministic equation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Erratum to “finite Element Approximation of the Cahn-hilliard-cook Equation”

We prove an additional result on the linearized Cahn-HilliardCook equation to fill in a gap in the main argument in our paper which was published in SIAM J. Numer. Anal. 49 (2011), 2407–2429. The result is a pathwise error estimate, which is proved by an application of the factorization argument for stochastic convolutions.

متن کامل

Erratum: Finite Element Approximation of the Cahn-Hilliard-Cook Equation

We prove an additional result on the linearized Cahn-HilliardCook equation to fill in a gap in the main argument in our paper which was published in SIAM J. Numer. Anal. 49 (2011), 2407–2429. The result is a pathwise error estimate, which is proved by an application of the factorization argument for stochastic convolutions.

متن کامل

Finite Element Approximation of the Cahn-Hilliard-Cook Equation

We study the nonlinear stochastic Cahn-Hilliard equation driven by additive colored noise. We show almost sure existence and regularity of solutions. We introduce spatial approximation by a standard finite element method and prove error estimates of optimal order on sets of probability arbitrarily close to 1. We also prove strong convergence without known rate.

متن کامل

THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY On weak and strong convergence of numerical approximations of stochastic partial differential equations

This thesis is concerned with numerical approximation of linear stochastic partial differential equations driven by additive noise. In the first part, we develop a framework for the analysis of weak convergence and within this framework we analyze the stochastic heat equation, the stochastic wave equation, and the linearized stochastic Cahn-Hilliard, or the linearized Cahn-Hilliard-Cook equatio...

متن کامل

An Error Bound for the Finite Element Approximation of the Cahn-Hilliard Equation with Logarithmic Free Energy

An error bound is proved for a fully practical piecewise linear nite element approximation, using a backward Euler time discretization, of the Cahn-Hilliard equation with a logarithmic free energy.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009